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Abstract

Motivation: Synthetic microbial communities begin to be considered as promising multicellular

biocatalysts having a large potential to replace engineered single strains in biotechnology applica-

tions, in pharmaceutical, chemical and living architecture sectors. In contrast to single strain engin-

eering, the effective and high-throughput analysis and engineering of microbial consortia face the

lack of knowledge, tools and well-defined workflows. This manuscript contributes to fill this import-

ant gap with a framework, called FLYCOP (FLexible sYnthetic Consortium OPtimization), which

contributes to microbial consortia modeling and engineering, while improving the knowledge

about how these communities work. FLYCOP selects the best consortium configuration to optimize

a given goal, among multiple and diverse configurations, in a flexible way, taking temporal

changes in metabolite concentrations into account.

Results: In contrast to previous systems optimizing microbial consortia, FLYCOP has novel

characteristics to face up to new problems, to represent additional features and to analyze events

influencing the consortia behavior. In this manuscript, FLYCOP optimizes a Synechococcus

elongatus-Pseudomonas putida consortium to produce the maximum amount of bio-plastic (PHA,

polyhydroxyalkanoate), and highlights the influence of metabolites exchange dynamics in a four

auxotrophic Escherichia coli consortium with parallel growth. FLYCOP can also provide an explan-

ation about biological evolution driving evolutionary engineering endeavors by describing why

and how heterogeneous populations emerge from monoclonal ones.

Availability and implementation: Code reproducing the study cases described in this manuscript

are available on-line: https://github.com/beatrizgj/FLYCOP

Contact: jnogales@cnb.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Consortia versus single strain design
The design and engineering of microbial species has been successfully

applied during the last decades to produce compounds of environ-

mental, industrial and health interest; increasing the efficiency of nat-

ural procedures, reducing cost and making possible even new

transformations (Dvo�rák et al., 2017; Khalil and Collins, 2010;

Kumar et al., 2016; Revuelta et al., 2016). Approaching biotechnol-

ogy transformations in terms of substrates and products complexity,

biotechnology procedures have gone from single transformations until

complex ones, going from low complexity substrates and products (i.e.

from glucose to ethanol), through medium complexity transformations

(i.e. from cellulose to antibiotics), until the current moment, where

high complex molecules including waste or pollutant compounds (such

as plastics or lignin) are expected to be degraded/transformed in

assorted high-value products, such as flavonoids, vitamins, isoprenoids

or steroids (Hansen et al., 2017; Vitorino and Bessa, 2017). All the pre-

vious stages of the biotechnological transformations have been

solved engineering single strains (Chae et al., 2017; Gustavsson and

Lee, 2016).

Aimed by the multiple advantages provided by microbial com-

munities, nowadays cutting-edge biotechnological approaches begin

to propose to microbial consortia as more effective strategy in order
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to solve these challenging high complex biotransformations

(Brenner et al., 2008; Cavaliere et al., 2017; Foo et al., 2017; Zhang

and Wang, 2016).

In Nature, free microbes live in communities, establishing com-

plex relationships with other species, and rarely isolated as most of

engineered microbes do; therefore, engineering microbial consortia

will be closer to natural and physiological behavior than isolated

strains. Other advantage of microbial consortia is they can carry out

additional or new functions, such as synthesizing more complex

molecules (e.g. a costly extracellular enzyme). This complex com-

pound would be the product of a cooperative effort of several

strains, in contrast to a single strain producing a metabolite associ-

ated to growth.

Pathway modularization is also a great advantage of commun-

ities (Eng and Borenstein, 2016; Julien-Laferrière et al., 2016).

Diverse metabolic functions could be split and distributed among

different strains in the community. Thus, a set of highly adapted and

specialized strains could carry out a particular metabolic function

each within the whole pathway designed to solve the biotechnologic-

al task. It implies less genetic transformation per strain, with lower

technical complexity, increasing the success likelihood. Moreover, a

microbial community could increase the efficiency and bioproduc-

tion performance in the biotechnological transformation of the input

compound. It could be achieved by a suitable utilization of different

substrates, or allowing the synthesis of several products by different

strains, or avoiding the accumulation of intermediate metabolites by

adjusting the relative subpopulation sizes in the community. Finally,

microbial consortia provide robustness against internal metabolic

and environmental stresses, which are decreased by spatial segrega-

tion that avoids undesired interferences of toxic intermediate

products.

Despite all these advantages of applying synthetic microbial

communities for biotechnological transformations, there are several

unresolved challenges (Zhang and Wang, 2016) to take into account

to design a synthetic consortium. The most important one is to de-

termine the conditions that allow co-culture and growth compatibil-

ity of different strains, given that the engineered strains usually are

optimized for metabolite production rather than cooperative grow-

ing as in natural communities. Another challenge is to select the ap-

propriate intermediate metabolites which could be transported

through membranes between different strains in the consortia.

To design those microbial consortia for biotechnological applica-

tions, we need to increase the knowledge about how a community

works at systems level, and also to increase the available tools to de-

sign and construct microbial consortia, both at computational and

experimental levels. Thus, this work contributes with a computa-

tional framework, called FLYCOP (FLexible sYnthetic Consortium

Optimization), to improve the understanding of the metabolic be-

havior of microbial consortia and to automatize the modeling and

computational design of those communities.

1.2 Metabolic modeling approaches
At single strain level, genome-scale metabolic reconstructions are or-

ganism specific knowledge bases. Such reconstructions are devel-

oped systematically through the integration of genome annotation,

omic dataset and biological knowledge available for the target

species at the time of reconstruction. They can be further trans-

formed into computational models enabling the quantitative predic-

tion of phenotypic states in terms of fluxes through individual

reactions (Bordbar et al., 2014). Constraints Based Reconstruction

and Analysis (COBRA) (Ebrahim et al., 2013; Schellenberger et al.,

2011) methods have become popular for analyzing metabolic mod-

els. COBRA methods and the large array of strain-design algorithms

available are commonly apply for single strain in silico design, sys-

tems metabolic engineering and optimization.

At community level, there are several tools from a descriptive

point of view that check the behavior of a particular microbial con-

figuration. However, current modeling approaches at community

level neither allow optimization nor design. Perez-Garcia et al.

(2016) categorized microbial consortia modeling descriptive

approaches within the context of stoichiometric metabolic

models. From simpler to more complex, the groups are: a) lumped

network, b) compartment per guild (multi-compartment), c) bi-level

optimization and d) hybrid (or Dynamic-Stoichiometric Metabolic

Network). Although each approach is recommended for modeling

different kind of interactions and scenarios, the last one provides

with the highest capabilities for designing complex conditions in mi-

crobial communities and with the flexibility for modeling a wide

range of microbial consortia. Based on Perez-Garcia et al. (2016)

criteria, that hybrid approach is the most suitable for engineering

microbial consortia, because it is the optimal approach to quantify:

1) inter-species interactions, 2) temporal changes in metabolites con-

centration and 3) physiology at community level, which are proper-

ties required for consortia design and optimization. Additionally,

this hybrid approach is suggested as the more promising for com-

munities with low species richness, a similar scenario to that

expected in synthetic microbial consortia designs for biotechnologic-

al transformations. So it is the best descriptive approach, where mul-

tiple scenarios could be modeled and multiple configurations could

be represented and optimized using our system.

There are two main available tools classified as hybrid

approaches: Microbial Community Modeller (MCM) (Louca and

Doebeli, 2015) which only has been tested in an E.coli community,

without combining different species as a consortium usually

includes; and COMETS (Harcombe et al., 2014) which has been

successfully applied in the modeling of multiple species commun-

ities, and even engineered, microbial communities. BacArena (Bauer

et al., 2017) is an alternative recent method for describing microbial

consortia, with an individual agent-based approach versus popula-

tion modeling as COMETS considers. Although it could be an alter-

native to COMETS, it was not explicitly classified as a dynamic

approach, and it does not allow all strains to grow in the same cell,

limiting its application to simplified scenarios with unknown experi-

mental diffusion parameters. Therefore, COMETS was selected as

our computational tool for describing consortia behavior.

Further than a descriptive view of microbial consortia, methods

which design and optimize them are scarce and mainly ad-hoc for

particular applications. There are tools for designing and optimizing

single strains for metabolic engineering, such as CAMEO (Cardoso

et al., 2018). However, their corresponding design tools at consortia

level represent a current challenge in microbial communities, where

our new system will contribute.

Given the current challenges in microbial consortia design, the

objective of this manuscript is to provide a computational frame-

work, called FLYCOP, to automatically design and optimize micro-

bial consortia given a personalized goal.

FLYCOP contributions are multiple and assorted. Firstly, its

wide flexibility in several aspects which allow its use under

very diverse microbial scenarios with distinct goals. Second,

FLYCOP helps to understand how microbial communities work at

systems level. Besides, it could save resources and time, avoiding or

reducing chemical optimization or trial-and-error attempts, by the

automatization of manual checking of different consortia
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configuration. FLYCOP also advances in ‘predicting the compos-

ition of a microbial community in a given environment’, recently

defined as a cross-cutting task (Chan et al., 2017). FLYCOP finally

contributes in helping to define the unknown objective function of

evolving communities, which has been proposed as a challenge

(Gottstein et al., 2016).

Next sections describe FLYCOP in depth, compare it with previ-

ous related systems and illustrate FLYCOP’s broad applicability by

addressing several cases of study of automatic designs of microbial

communities: a de-novo synthetic consortium, a multiple cross-

feeding preserving stability case and engineering evolution of mono-

clonal communities.

2 Material and methods

2.1 FLYCOP
FLYCOP (FLexible sYnthetic Consortium OPtimization) is a frame-

work for the in silico modeling of microbial communities, exploring

multiple consortium configurations in an automatic and guided

way, optimizing a customized consortium goal. FLYCOP allows the

integration, analysis and optimization of specific genome-scale

metabolic models (GEMs) describing partners in the community.

The design of a microbial consortium addressing a particular

biotechnological task requires of thousands of possible consortium

configurations and multiple criteria to evaluate, making unfeasible

to carry out an exhaustive exploration and manual evaluation of the

different configurations. Thus, FLYCOP was designed to avoid the

trial-and-error of multiple random consortium configurations.

Therefore, rather than tuning each control point one by one,

FLYCOP tackles this multiple objective problem with an optimiza-

tion approach, through a process called stochastic local search

(Hoos and Stützle, 2004). Thus, this kind of search procedure guides

the exploration through the optimal microbial consortium or near

solutions.

In a simplified view, FLYCOP takes many consortium configura-

tions as input and returns just one configuration as output, i.e. the

best found. Figure 1 outlines our FLYCOP algorithm, including the

following steps: 1) Updating metabolic models in COBRA, comput-

ing and/or changing bounds in the particular secretion reactions

involved in tuning the metabolites exchange (cross-feeding, remov-

ing or overproducing metabolic compounds); 2) Establishing dy-

namic and community COMETS parameters (for example, initial

biomass of each strain) in its layout configuration file; 3) Simulating

a consortium dynamic evolution of different strains; 4) Computing

fitness (i.e. quality measure); and 5) Checking and updating for new

search iteration (going back to step 1) by SMAC (Sequential Model-

based Algorithm Configuration) (Hutter et al., 2011) or to finishing

the optimization process when the maximum number of cycles is

reached.

The input to FLYCOP are: GEMs of the microbial strains in the

community, parameters describing the consortium configuration

and their range of suitable values, and a fitness function. The con-

sortium configuration includes several parameters with multiple val-

ues to check for each one, while the assessment score will determine

the quality of each consortium over an iterative procedure, evaluat-

ing how a specific combination of values affect the consortium be-

havior. A fitness or evaluation function is required to compare the

different solutions and to describe the optimization objective—this

is a key point for the FLYCOP optimization. The fitness function

must be meticulously designed according to the consortium

optimization goal. In a multi-objective case, a weighted sum of indi-

vidual objectives should be defined.

FLYCOP output is a customized consortium configuration opti-

mizing a given particular objective defined in a fitness function.

Each consortium configuration is described by a set of parameter

values. Those values are optimized with stochastic local search,

according to the fitness function. The fitness value of each configur-

ation is computed as the mean of several COMETS runs with the

same configuration, due to the random nature of COMETS (varying

the order of execution of the different models growing in the same

cell space, mimicking a real scenario). In FLYCOP, all consortium

simulations are carried out in a single spatial point (i.e. a 1 by 1

grid). Besides, FLYCOP allows to include physiological constraints

that reduce the computable space, i.e. consortium configurations to

be rated by FLYCOP.

FLYCOP was designed as a dynamic integration of different

technologies. Thus, in every iteration, FLYCOP a) updates single

metabolic models with COBRA (Schellenberger et al., 2011), b) per-

forms the consortium simulation with COMETS (Harcombe et al.,

2014) and c) selects and evaluates candidate consortium configur-

ation with SMAC (Hutter et al., 2011). Supplementary Material

includes a brief description of each technology.

In FLYCOP, we have chosen the SMAC framework, an iterated

local search algorithm applied to a parameter configuration space,

to make possible the selection of the most suitable combination of

values of a given list of parameters from a set of given values. The

output configuration provided by SMAC is typically applied to

problems such as Boolean satisfiability problems (SAT), probabilis-

tic reasoning, automatic planning, or even protein folding. Because

of its success in solving problems in assorted domains, it was consid-

ered a suitable approach to optimize microbial consortia.

Although FLYCOP returns a unique solution from the local

search optimization, there is a number of alternative solutions with

high fitness values (closer to the highest one) that could be of inter-

est. Therefore, a data mining analysis is automatically applied to re-

port a summary of the FLYCOP evaluated configurations, and the

description of the best ranked ones.

Fig. 1. FLYCOP diagram. Follow the arrows from input (top left corner) to out-

put (top right corner) in a counter-clockwise direction. In this exemplifying

consortium optimization by FLYCOP, in each puzzle, the three colored big

pieces (green, blue and red) represents three different microbial strains in the

consortium. The different brown and gray little squares represent two distinct

metabolites whose secretion rate should be optimized and distributed among

the consortium members. Thus, in the putative input configurations there are

different metabolite secretion rates and distributions, and the output puzzle

represents the best consortium configuration found by FLYCOP, maximizing

the secretion
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D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i954/5093244 by guest on 08 D
ecem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty561#supplementary-data


2.2 Flexibility: multiple applications categories
As a general overview, FLYCOP is applied to design microbial con-

sortia, optimizing a given goal, through defining their configuration.

It could be instantiated in multiple and assorted specific FLYCOP

applications, such as simulating different scenarios before in vivo

experiments; defining medium composition, detecting limiting

nutrients; discovering the biological metric optimized in an evolu-

tionary process; optimizing cross-feeding relationships; optimizing

strain ratios in the consortium; optimizing pathway fragmentation

among several strains (first, grouping genes or reactions and second,

distributing these groups among strains in the consortium); etc.

From other point of view, FLYCOP could increase the knowledge

about microbial communities solving some questions such as how to

preserve stability through the configuration of cross-feeding rates

and strain ratios; how to maximize pollutant cleaning through

assigning cleaning tasks to different strains in the consortium; or to

describe why or how heterogeneous populations emerge from mono-

clonal ones.

FLYCOP proposes a very generic and flexible approach, applic-

able to many designs of microbial consortia characterized by differ-

ent combinations of strain compositions, goals and parameters to

configure, that are categorized and summarized in Table 1. It is re-

markable that new categories of optimization goal and configurable

parameters could be defined and several ones combined. The ‘con-

figurable consortium parameter’ category represents the prediction

output. A priori whatever mixture of categories is feasible for

FLYCOP, although we recommend taking physiological conditions

into account to define meaningful applications. The first three cate-

gories (strain ratios, cross-feeding rates and co-metabolism) repre-

sent the most common parameters required to configure when a

synthetic consortium is designed. The ATP maintenance coefficient

category has been included because it has been reported as a high in-

fluencer over the community composition, especially for small GR

(Koch et al., 2016).

3 Results

The first subsection explains a detailed comparison of FLYCOP

with other consortium optimization methods. The last three subsec-

tions describe three distinct FLYCOP applications, where specific

and different cases show the flexibility of our framework and also

validate our computational optimization with already published

in vivo studies.

3.1 Comparison consortia optimization methods
Table 2 collects a descriptive comparison of FLYCOP with other

methods optimizing microbial communities. The main common dif-

ferences between FLYCOP and the other consortia engineering and

optimization methods are: a) FLYCOP designs optimized consortia

automatically by evaluating different configurations and then select-

ing the best one, in a reasonable time; b) the active design versus just

a descriptive approach, which often requires many experimental val-

ues, contrasting with FLYCOP, which could suggest some of those

experimental parameters; c) it is based on the hybrid approach,

being the most complex one, of high interest and recommended for

synthetic engineered species, allowing FLYCOP to describe changes

Table 1. Categorization of possible FLYCOP applications, according

to different sub-types of strain composition, optimization goal and

configurable consortium parameters

Strain composition

2 homogeneous/monoclonal strains (phenotypic heterogeneity)

2 heterogeneous strains (genotypic and phenotypic heterogeneity)

> 2 strains (homo- or hetero-)

Optimization goal

Maximize Growth Rate (GR) (not limited carbon source)

Maximize yield (biomass per carbon unit, limited carbon source)

Maximize production of metabolite of interest

Minimize degradation time of contaminant metabolite

Minimize time to reach stationary phase

Minimize time to exhaust resources

Maximize parallel growth/stability

Configurable consortium parameters

Strains ratio

Cross-feeding rates

Co-metabolism (carbon sources ratio, when >1 carbon sources)

Medium composition

Initial carbon source concentration

Pathway fragmentation and consortia partner selection

Aerobic-anaerobic switching time

ATP maintenance coefficient

Table 2. Summary comparison engineering and optimization consortium methods, classified according to optimization goal

Optimization goal Flexible

(FLYCOP)

Community

parameter

(d-OptCom)

(Zomorrodi et al., 2014)

Stability

(SteadyCom)

(Chan et al., 2017)

Pathway distribution

(MultiPlus)

(Julien-Laferrière et al., 2016)

Descriptive metabolic modeling Hybrid Bi-level Bi-level Lumped

Stoichiometric knowledge Yes Yes Yes No

Optimization approach Local search (SMAC) Global search (BARON) Iterative LP Dynamic programming

FBA solver complexity Linear Bilinear Linear –

Multi objective (*1) Yes Limited No Limited

Flexible objective Yes Yes No No

No. strains Small Small High Small

Kinetics parameter No (optional) Yes Yes (optional) No

New (LP) constraints No Yes Yes No

Data Analysis support Yes No No No

Software availability Yes No Yes Yes

Notes: *1: FLYCOP allows several objectives at community level; d-OptCom, 1 single strain level þ 1 community level objectives; MultiPlus, 2 fix objectives:

minimizing reactions and minimizing exchanged metabolites.

FLYCOP i957

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i954/5093244 by guest on 08 D
ecem

ber 2023



in metabolite concentration in the medium, which is a not an avail-

able capability in bi-level or lumped approaches.

Summarizing Table 2, the most relevant FLYCOP contributions

are: 1) Dynamic (hybrid) versus static (bi-level/lumped) as descrip-

tive metabolic modeling, which means to design and configure the

community versus just to describe it; 2) Flexible optimization object-

ive (different ones), in contrast to a fixed objective in each method;

3) Multiple and assorted uses cases; 4) Multi-objective, with

FLYCOP combining several objectives in a unique fitness function;

5) Not requiring to define new equations to constrain at low level

(i.e. linear programming); and 6) Integrated data analysis. A detailed

comparison is available in Supplementary Material.

In addition, FLYCOP can maximize one metric and minimize an-

other one at once, defining the desired fitness function, such as

maximize biomass and minimize time. FLYCOP model mutations

are not limited to rates in individual models, but they could also be

population properties, as ratio of strains, or carbon sources ratios.

3.2 Case study 1: Step-by-step synthetic consortium

design with FLYCOP: S.elongatus-P.putida
Following the steps in Figure 2, we describe how to apply FLYCOP

to design and optimize a new synthetic microbial consortium.

1. Community conceptual design. First, the conceptual design of

the consortium must be defined, selecting the strains within it and

the suitable cross-feeding relationships that make the desired bio-

technological task feasible. In this case study, as a FLYCOP proof of

concept, we design and optimize a S.elongatus-P.putida consortium

where the former feeds with sucrose to the latter, which produces

bio-plastic (polyhydroxyalkanoate, PHA) under ammonium limiting

conditions. FLYCOP determines the optimal values of sucrose to be

secreted by the cyanobacterium (it means the percentage of fixed

carbons that S.elongatus dedicates to produce sucrose rather than

growing itself), strains ratio (initial biomasses) and NH4 concentra-

tion in the culture medium. This case study covers several categories

of FLYCOP flexibility applications (see Table 1): it is a multi-strain

consortium with 2 heterogeneous strains; the optimization goal is to

maximize the production of a metabolite of interest (PHA); and it

involves several categories of configurable parameters: strain ratio,

cross-feeding rate (sucrose) and culture medium composition (NH4

concentration). Besides, this is a synthetic consortium susceptible to

be validated in a wet lab.

2. Single strains design. The base genome-scale models of the

selected bacterial species should be modified for co-living in the con-

sortium; adding, removing or modulating the required reactions and

their bounds. Table 3 summarizes how those steps are instantiated

in the current case study.

3. Culture medium composition and uptake of metabolites defin-

ition. A culture medium composition where the assorted strains

within the consortium can live together must be defined.

Additionally, a literature search or COBRA model checking is

required to define the maximum uptake of carbon source (and

maybe other limiting nutrients such as O2) and metabolite secreting

rates.

4. Selecting FLYCOP parameters and range of values. It repre-

sents the variables (from categories defined in Table 1) whose values

combinations characterize each evaluated consortium. Discrete val-

ues are defined instead of continuous ones, to reduce the optimiza-

tion problem complexity, and to prevent that FLYCOP explores

very close configurations.

5. Defining FLYCOP optimization goal and fitness function. A

function to optimize must be defined, according to the categories

described in Table 1. Other important point to define is where to

compute the fitness (exponential or stationary phase, in a unique

point or an average, etc.), depending on the consortium goal.

6 and 7. Run and FLYCOP-supported data analysis. A FLYCOP

run must explore enough different configurations (usually around

500) to converge a solution and to get a robust data analysis of the

evaluated configurations. FLYCOP provides different resources for

robustness, sensitivity and data analysis support: scatterplots show-

ing the distribution of the explored values by each parameter; correl-

ation and ellipse plots; growth curves of all distinct evaluated

consortia; tables with all the evaluated configurations, including

parameter values, fitness and some other interesting metrics (such as

Fig. 2. Step-by-step workflow for designing and optimizing a microbial con-

sortium with FLYCOP

Table 3. Definition steps 1–6 (identified in Fig. 2) of S.elongatus-

P.putida synthetic consortium design with FLYCOP

Step Current case study

1 S.elongatus (synecho) –[sucrose]! P.putida (KT)! PHA

2 iJB785 (Broddrick et al., 2016)a: co-overexpress cscB & spsb

iJN1411 (Nogales et al., 2017)c: þinvertase, -NTRARx,

NTRIR2xd

3 BG11 medium (Rippka and Deruelles, 1979), NH4

concentration defined by FLYCOP output

KT sucrose uptake: 1/2 glucose (3.1 mmol/gDWh�1)e

KT PHAf uptake: 1.83 mmol/gDWh�1 g

4 Sucrose secretion rate: from 10 to 80; default: 30%h

Initial biomass synecho: from 0.5 to 2; default: 2 g/Li

Initial biomass KT: from 0.02 to 0.2; default 0.1 g/Lj

Concentration of NH4: from 0.5 to 15; default 7 mMk

5 Fitness¼maximizing accumulated PHA in 100 hours

6 sucrPer¼40%, synecho¼2 g/L, KT¼0.2 g/L and NH4¼0.5 mM;

PHA¼22.43 mM in 100 hours

aUpdated including more detailed sucrose and lipids metabolisms as well as

by removing minor bugs such as the requirement for leucine for growth.
bTo secrete sucrose under salt stress (Duan et al., 2016).
cThe latest and more complete P.putida GEM available, which include

around 3000 reactions.
dTo induce nitrogen limitation conditions only in P.putida KT2440 but not

in S.elongatus growing in BG11 mineral medium which contains nitrate as ni-

trogen source; nitrate assimilatory system (codified by PP_1703-06 genes) was

removed.
eDel Castillo et al. (2007).
fSince iJN1411 is able to synthesize a large number of PHA monomers (up

to 27), we considered the C8 monomer as model PHA.
gThe maximum PHA production rate of KT using sucrose as carbon source

was computed in COBRA under the above constraints and the PHA produc-

tion as objective function.
hmax. 80% (Ducat et al., 2012).
iIt lets a growing margin until the 3.5 g/L when the sucrose secretion is

induced with NaCl in (Duan et al., 2016).
jThe default value of the feeding strain initial biomass (synecho) is at least

one order of magnitude higher than the eating strain biomass (KT). Values

definition based on the feasible amount of biomass obtained from a colony

after a typical incubation period.
kThe maximum value comes from M63 medium, a common minimal

medium used for KT growth; while the lower limit is below of the NH4

concentration used for PHA production under nitrogen limiting conditions,

e.g. 1.5 mM (Prieto et al., 2016).
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the metabolite concentrations). Those metrics allow further data

analysis, such as decision rules identifying the highest X% of best

solutions, or the subset of the most influencing parameters in dis-

criminating high from low fitness consortium configurations.

In the current case study, FLYCOP found a robust configuration,

producing the highest PHA (�22 mM) in 100 hours. That configur-

ation shares parameter values with the best 5% of solutions (sucrose

percentage¼40%, synecho¼2 g/L (highest value) and increasing

NH4, from 0.5 to 3.5 mM).

Figure 3G shows the distribution of the different explored con-

figurations (parameter values) and their correlations with the fitness

and also between the different pairs of variables. The best fitness

correlation (0.62) points out that the higher the initial S.elongatus

biomass is, the higher the fitness (i.e. PHA production) is. It makes

physiological sense, because a lower sucrose-producer biomass

means a lower sucrose concentration available to P.putida to trans-

form it on less PHA (Fig. 3A). This fact is related to another clear

conclusion: the secretion of 40% sucrose by the cyanobacteria,

drawn by the arrow shape in the percentage of sucrose versus fitness

(upper right corner in Fig. 3G). Moreover, the above-mentioned

conclusion is an interesting prediction, because the published secre-

tion rates are around 80% (Ducat et al., 2012), thus FLYCOP sug-

gests that the design of synthetic and stable consortia should be

based on sucrose overproducer cyanobacteria secreting less sucrose

but over longer time.

The second most relevant fitness correlation is with NH4, being

inverse in this case (�0.54), indicating that the higher the initial am-

monium concentration is, the lower the fitness is. This fact is in

agreement with literature, where a low NH4 concentration is associ-

ated with PHA production (Prieto et al., 2016). Thus, if the ammo-

nium is increased, we observe an initial phase where P.putida is

growing and then the produced PHA is slightly lower (compare

Fig. 3C and D).

Finally, the initial P.putida biomass does not directly correlate

with the fitness, because it is inversely related with another param-

eter: NH4. Thus, when P.putida biomass is lower, sucrose is accu-

mulated and is not completely transformed to PHA in 100 h

(Fig. 3E). Then, NH4 should be increased because P.putida growth is

required to get enough biomass to reach high PHA production

(Fig. 3F).

3.3 Case study 2: Co-growth four auxotrophic E.coli
We selected this demonstration case to compare FLYCOP with the

most recent consortia optimization method, SteadyCom (Chan

et al., 2017). The consortium to optimize is described in

Figure 4-left: four E.coli’s with amino acids cross-feeding relations.

Each strain uptakes from the medium the pair of amino acids that is

A B G

C D

E F

Fig. 3. FLYCOP results S.elongatus-P.putida consortium producing PHA. (A–F) Consortium growth curves with different configurations explored by FLYCOP, cor-

responding to (% sucrose secretion by Synechococcus, initial biomasses of cyanobacteria and KT, NH4 initial concentration): A) 40, 1, 0.1, 0.5; B) 40, 2, 0.1, 0.5; C)

40, 2, 0.2, 0.5; D) 40, 2, 0.2, 7; E) 40, 2, 0.02, 0.5; F) 40, 2, 0.02, 2. Each one represents one modification (or two in B and F) versus the best configuration (panel C).

(G) Sensitivity analysis with scatter-plots (upper triangle) and correlations (lower triangle) between fitness (last column and row) and consortium parameters

(remaining columns and rows). In each individual plot, X-axis corresponds to column variable and Y-axis to row variable [for example, the upper right corner plot

represents fitness (X) versus %sucrose (Y)]. Linear-regression lines in red. Main diagonal represents histograms of the parameter values

Fig. 4. Description and FLYCOP solution for the co-growth four auxotrophic

E.coli SteadyCom consortium. (Left) consortium description, adapted from

(Chan et al., 2017). (Right) dynamic growth curve showing cross-feeding

amino acids and their accumulation evolution in the consortium designed

with FLYCOP, with relative abundances: Ec1¼ 35%, Ec2¼10%, Ec3¼15%,

Ec4¼ 40% and amino acid secretion rates (in terms of percentage of GR, with

average 0.610 gDWh�1): arg¼1.5, lys¼2, met¼ 1.6, phe¼ 1
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unable to synthesize by itself, and secretes other ones. This domain

illustrates a FLYCOP application of more than two strains consor-

tium composition, optimizing parallel growth (i.e. stability) and

configuring two types of parameters: strains ratio and cross-feeding

rates.

We designed the single strains from the iAF1260 E.coli model

(Feist et al., 2007) according to the description and data provided in

Table S2 from (Chan et al., 2017) design, where the reactions and

input amino acid uptakes are defined. Then, FLYCOP was applied

resulting in the configuration whose dynamic simulation is illus-

trated in Figure 4-right. The FLYCOP effective GR is lower than

that the one SteadyCom reached; whilst it proves FLYCOP is able to

design the same type of consortium that SteadyCom and contribu-

ting with additional knowledge about how the microbial consortium

dynamically works. This case study demonstrates FLYCOP can be

applied to design microbial consortia requiring stability through

similar GR in all strains, objective for which SteadyCom is limited.

FLYCOP reaches a community GR lower than SteadyCom

(0.610<0.735 gDWh�1). Because of the extra carbon source con-

sumed by synthesizing and secreting the amino acids involved in

cross-feeding, a lower community GR than the wild type GR

(0.737), as FLYCOP gets, makes physiological sense. In fact, we

tested growing the four E.coli strains together in COMETS in a con-

sortium with a manual configuration defined by the SteadyCom

given strain ratios and adjusting amino acid secretion rates to reach

the SteadyCom GR of 0.735 in each independent strain. Thus, it

resulted in a co-living GR lower than the GR reported by

SteadyCom, meaning their solution is out of FLYCOP solution

space. This evidences SteadyCom does not take metabolite accumu-

lation in the medium into account, assuming a direct transfer of

amino acids from one strain to another. Thus, FLYCOP is based on

other assumptions that allow the inclusion of more physiological

knowledge about medium composition and dynamic change of

metabolites, such as it is shown in the dynamic growth representa-

tion (Figure 4-right). Besides, FLYCOP optimized amino acid secre-

tion rates (as proportion of GR): arg¼1.5; lys¼2; met¼1.5;

phe¼1. SteadyCom did not make available their amino acids secre-

tion rates to be compared.

There are alternative configurations that reach the same average

GR values in the consortium, pointing out the robustness of that so-

lution. All of them have common characteristics. First, in most of

the alternative consortia configurations, arginine is the most limiting

amino acid, explaining why relative abundance of its producer (Ec1)

is high. However, in the best configuration, the most limiting amino

acid is lysine (Fig. 4), even when the lysine secreting strain (Ec2)

reaches its maximum secretion rate value. On the contrary, phenyl-

alanine tends towards accumulation in all configurations. Thus, the

predicted amino acids accumulation explains, at great extent, the

lower community GR estimated by FLYCOP when compared with

SteadyCom. Second, relative abundances follow the pattern:

Ec1þEc4: 75%/Ec2þEc3: 25% (or 65/35%) versus SteadyCom:

50/50%. In FLYCOP solutions, the relative abundances ratios in

decreasing order tend towards: Ec1, Ec4, Ec2, Ec3, with Ec2 and

Ec3<25% each one and <50% together. The same relations Ec1-

Ec4 and Ec2-Ec3 described in SteadyCom are evident with

FLYCOP: one of each pair presents higher abundance, and that pair

abundance is preserved in different good configurations, although

the internal distribution of the relative abundances could change.

Third, regarding the fitness correlation, a high fitness is correlated

mainly with a high Ec1 relative abundance (0.49), inversely with the

Ec3 relative abundance (�0.34) and after with lysine secretion

(0.24).

According to FLYCOP results and data analysis of the multiple

configurations, high values of arginine and lysine are required. We

could explain this conclusion thanks to the dynamic simulation

FLYCOP provides us showing how the metabolite concentrations

change over time, which SteadyCom does not allow. Thus, commu-

nity growth curves show that although those amino acids are finally

accumulated, at the beginning they are very limiting and scarce

nutrients (almost parallel lines to the x-axis), and therefore a lower

secretion rate would not allow to start the community growth. Data

analysis of explored configurations leads to conclusions about the

range of values associated with good consortium configurations; for

example, more than 50% of the evaluated consortia do not grow,

being characterized by a low arginine and/or lysine secretion

rate (<1).

Although the FLYCOP average GR is lower than the SteadyCom

one, thanks to the use of a hybrid approach to model strains at a de-

scriptive level by FLYCOP we can observe how dynamically the

growth and the metabolite concentrations change in the medium,

analyzing how they evolve and influence the global behavior of the

community. Apart from strain ratios, the same as SteadyCom,

FLYCOP also predicts the amino acid secretion rates.

3.4 Case study 3: Describing microbial community

evolution
The third case study shows a different perspective of microbial com-

munities, where FLYCOP also contributes, apart from design and

optimization: to increase knowledge and understanding about mi-

crobial evolution; in other words, to find the biological objective of

a microbial community that evolves over time. How? Through the

selection of the objective function with the FLYCOP predictions

most similar to in vivo experiments, among a set of different func-

tions, each one providing a putative physiological explanation of the

experiment.

To illustrate this new FLYCOP approach, we took the Long

Term Experimental Evolution (LTEE) initialized in February 1988

by Richard Lenski (Lenski et al., 1991). It consists on growing

E.coli in serial cultures in flasks for a long time and check what hap-

pens. Cultures have been growing and passed everyday to fresh me-

dium, and samples have been frozen periodically. After around

thirty years, the Lenski’s group has cultured more than 60 000 gen-

erations, providing many samples, data and events to analyze bac-

terial evolution (Good et al., 2017; Lenski, 2017).

Among the different events, we focused on a stable polymorph-

ism appeared in population Ara-2 (one of the not growing on ara-

binose cultures, from the twelve ones in LTEE) (Rozen and Lenski,

2000). Over time, different mutations have emerged and accumu-

lated if beneficial, appearing and disappearing several subpopula-

tions; although only the Ara-2 has resulted in a stable polymorphism

of two ecotypes, L and S. Those ones appeared around generation

6500, with morphological differences, with large (L) and small (S)

colonies, respectively. Further knowledge about those two subpopu-

lations have been known along diverse in vivo and in silico studies

(Großkopf et al., 2016; Lenski, 2017; Le Gac et al., 2012; Plucain

et al., 2014). The S ecotype is able to grow more efficiently with a

secondary product secreted during growth on glucose, which is acet-

ate according to (Großkopf et al., 2016), therefore we have decided

to call glucose specialist and acetate specialist, respectively to L and

S strains. L grows faster on glucose, and both ones faster than their

ancestor.

Previous systems were also applied to LTEE domain: Inverse

FBA (Zhao et al., 2016) and evoFBA (Großkopf et al., 2016).
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D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i954/5093244 by guest on 08 D
ecem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty561#supplementary-data


Inverse FBA characterized the objective functions compatible with

measured fluxes, concluding that there are infinite ones could result

in the observed fluxes, except to only maximizing GR, what is agree

with FLYCOP results. evoFBA also studied LTEE with metabolic

models. However, a quantitative comparison with FLYCOP is un-

feasible, because none of both ones applied a community modeling

approach, just a single species one, without considering the ex-

change of metabolites as FLYCOP does. A further textual compari-

son is available in Supplementary Material.

To represent this stable polymorphism in LTEE with FLYCOP,

we took the iJO1366 E.coli model (Orth et al., 2014), and we

defined a wild type (WT) conditioned to a limiting carbon source

(glucose), as in the LTEE experiment. We adjusted the WT model to

physiological values of acetate secretion rate (3.7 mmol/gDWh�1) in

glucose limitation conditions (10 mmol/gDWh�1 glucose uptake

rate), according to (Steinsiek and Bettenbrock, 2012), where the up-

take rates are available with a similar growth rate (0.8) to that one

reported in LTEE experiments. FLYCOP began the search of the

final polymorphism with a population of two equal WT strains at

the same concentration (0.01 g/L of each strain). Then, FLYCOP

checked the behavior of microbial communities composed by two

E.coli strains with different uptakes and secretion rates of the three

metabolites implicated in the heterogeneity (glucose, acetate and

oxygen). In those conditions, FLYCOP searched the optimized com-

munity configuration given a specific biological goal. Due to that

goal is unknown in this LTEE evolutionary process, we defined 5

different options, to solve in 5 different FLYCOP runs: three individ-

ual metrics to maximize (growth rate or biomass or yield) and two

combined depending on time (to maximize biomass or yield in the

minimum time). This case study combines next options of Table 1

FLYCOP applications: 2 homogeneous strains category, with differ-

ent optimization goals including combinations of simple categories,

configuring the parameters about co-metabolism: the carbon sources

(glucose and acetate) and the oxygen uptakes of each strain.

Figure 5 top row panel shows the most common growth curve

profiles of consortia configurations evaluated with FLYCOP: 1) no

differentiation with both strains the same as the wild type, 2) no dif-

ferentiation where only one strain grows (with/out secreting acet-

ate), and 3) polymorphism with two co-living strains growing first

in glucose and after in previously secreted acetate. Each FLYCOP

growth curve represents the final state after evolution.

As opposite to the previous case studies, FLYCOP found

assorted best configurations. It means there are solutions with differ-

ent profiles among those highest evaluated. This fact could represent

that there are alternative consortia configurations leading to poly-

morphism, and one of them was successful in Ara-2 population;

while other ones could have occurred, although not being persistent

along the evolution (Barrick et al., 2009). Nevertheless, to determine

which fitness function better explains the Lenski’s experiment, we

check in which one the highest frequency of polymorphism cases

(green in Fig. 5) appears among the best configurations. Thus, maxi-

mizing yield or biomass are the biological goals FLYCOP suggests

with more than 50% versus very low frequencies in other fitness

functions (see Fig. 5, bottom row, left). Moreover, FLYCOP predicts

that under environmental stress, such as limiting oxygen uptake (to

7 mmol/gDWh�1), the polymorphism frequency increases with dif-

ferent biological goals although being clearly dominant when yield

is maximized and time minimized (Fig. 5, bottom row, right).

Therefore, the difficulty to find a robust polymorphism configur-

ation points out this event of heterogeneous co-living is rare

among the multiple appearances and deaths of slightly different

strains along LTEE, what it is agree with experimental reports

(Barrick et al., 2009). In conclusion, despite it is a rare event,

FLYCOP allow us to study multiple conditions and to select the

most favorable one where polymorphism could emerge.

4 Discussion and conclusions

FLYCOP is a suitable tool for the in silico design of microbial con-

sortia, allowing the simulation and detailed evaluation of different

scenarios before facing up in vivo experiments with the definitive

selected (optimal) configuration.

A limitation in current tools for designing microbial consortia

with the hybrid modeling approach, is that they simulate one by one

particular given scenario, not optimizing or selecting the best config-

uration, but only showing single snapshots, just at a descriptive level

(such as COMETS). FLYCOP solves this limitation combining the

hybrid approach with a further optimization phase.

FLYCOP is configurable to different and multiple applications

of microbial consortia design. The application to the synthetic

S.elongatus-P.putida consortium shows many of the FLYCOP capa-

bilities to design and optimize consortia and how to use it given a

new one. The co-growth four E.coli case of study compares

FLYCOP with one of the most updated available methods to opti-

mize consortia, i.e. SteadyCom, highlighting the flexibility of

FLYCOP to optimize the same goal of stability (apart from others),

and its additional capacity of dynamic flux control of the metabo-

lites in the medium and the growth depending on it. Finally, the

in vivo LTEE case of study evidences how FLYCOP could also be

applied to study evolution in heterogeneous populations, suggesting

the maximization of yield in minimum time as the most promising

biological goal optimized when polymorphism emerges.

FLYCOP contributes in many aspects to in silico design and opti-

mization of microbial communities. One of the most important con-

tributions is the FLYCOP flexibility, because it is a common

framework being applicable to very diverse microbial scenarios with

distinct goals, computationally checking multiple community con-

figurations. Moreover, different microbial consortium goals are eas-

ily changeable and their optimization results are comparable, in

contrast to other current technologies limited to just a predefined

Fig. 5. FLYCOP best consortium configurations profiles in LTEE with different

fitness functions. Top: three representatives of the most common growth

curves categories along different consortium configurations evaluated by

FLYCOP. Bottom: cases frequency of 5% best configurations per fitness func-

tion (column names) which maximized a biological measure and sometimes

also minimizes time

FLYCOP i961

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/17/i954/5093244 by guest on 08 D
ecem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty561#supplementary-data


goal such as stability. Varying the optimization goal is an important

advantage, given that the growth rate could not be the best physio-

logical option (Kreft et al., 2017; Schuster et al., 2008).

In addition, FLYCOP contributes with a decrease in experimen-

tal tests, guiding towards the most promising consortium configura-

tions, saving up both resources and time. FLYCOP permits the

integration of regulatory events in the community model, e.g. by

switching reactions on and off or by tuning the bounds of fluxes in

different single models, evaluating their effects in a dynamic way.

FLYCOP helps to understand how microbial communities work at

systems level. For example, illustrating what and when metabolites

are accumulated or exhausted in the culture medium, and support-

ing with keys about how and why it happens, depending on the

consortium evolution goal. In terms of descriptive method for meta-

bolic modeling of microbial consortia, FLYCOP entails the hybrid or

dynamic approach versus the multi-compartment or lumped network

approaches selected by other frameworks that optimize microbial

consortia based on metabolic models. This hybrid approach allows

FLYCOP to describe temporal changes of metabolites concentration,

and take dynamics into account, guiding the search of optimized con-

sortium configurations using knowledge from simultaneous growth

curves. FLYCOP facilitates an additional analysis of the assorted eval-

uated consortia and the combinations of configuration parameter val-

ues, with statistics and machine learning techniques, resulting in new

knowledge retrievement and reasons explaining why the optimal con-

figuration was selected versus others ones.

FLYCOP presents some limitations. First, the more parameters

to be configured, the more time is required. Second, the descriptive

hybrid approach (in what FLYCOP is based) is that allowing to rep-

resent more complex physiological properties of microbial commun-

ities. However, it also entails a drawback in terms of the number of

strains in the consortium, being more limited than other engineered

consortium modeling methods based on a different descriptive mod-

eling such as multi-compartment one. Despite the limitation to low

species richness, most of engineered synthetic consortia, it means the

main FLYCOP application area, are composed of few strains.

Similarly to LTEE case study, a further FLYCOP application

would be to predict the behavior of other long-term consortium

with distinct strains, or even ‘domesticating’ evolution by modifying

the final state after evolution by perturbing the environment under a

nutrient limiting stress. Other interesting further work would be to

apply FLYCOP to microbiome optimization, in a microbial commu-

nity with available metabolic models, similarly to how SteadyCom

does, taking the advantages of FLYCOP to induce changes in the

medium and checking how it influences over community dynamics.

The importance of moving from the single strain engineering to

the community engineering is remarkable given that opposite conclu-

sions could come out modeling isolated strains versus modeling a mi-

crobial community with the modeled individual strains. For example,

a particular strain could be the best one cleaning a metabolite pollu-

tant at single strain modeling, while it could not be true when it

would live in a community, because its new tasks for producing some

cross-feeding products to stabilize the consortium could require more

attention and energy than cleaning additional metabolites.

In conclusion, our metabolic-based computational framework to

design, analyze and optimize consortia, FLYCOP, has a hopeful fu-

ture contributing to the emerging field of engineering microbial

communities; because those consortia are appearing as promising

biotechnological tools to face up multiple current and coming appli-

cations and challenges in health and industry, even in new environ-

ments [such as living architectures (Armstrong et al., 2017)] where

microorganisms were not though as playing a fundamental role.
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