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Summary

Genome-scale reconstructions of metabolism are com-
putational species-specific knowledge bases able to
compute systemic metabolic properties. We present a
comprehensive and validated reconstruction of the bio-
technologically relevant bacterium Pseudomonas putida
KT2440 that greatly expands computable predic-
tions of its metabolic states. The reconstruction rep-
resents a significant reactome expansion over
available reconstructed bacterial metabolic net-
works. Specifically, iJN1462 (i) incorporates several
hundred additional genes and associated reactions
resulting in new predictive capabilities, including
new nutrients supporting growth; (ii) was validated
by in vivo growth screens that included previously
untested carbon (48) and nitrogen (41) sources;
(iii) yielded gene essentiality predictions showing
large accuracy when compared with a knock-out
library and Bar-seq data; and (iv) allowed mapping
of its network to 82 P. putida sequenced strains
revealing functional core that reflect the large

metabolic versatility of this species, including aro-
matic compounds derived from lignin. Thus, this
study provides a thoroughly updated metabolic
reconstruction and new computable phenotypes for
P. putida, which can be leveraged as a first step
toward understanding the pan metabolic capabilities
of Pseudomonas.

Introduction

The group Pseudomonas comprises a heterogeneous
and large group (>100) of Gram-negative, gamma-
proteobacterial species (Palleroni, 2010). They show a
noteworthy metabolic versatility and adaptability, enabling
colonization of diverse niches (Silby et al., 2011). Pseu-
domonas are of great interest because of their impor-
tance in human and plant diseases, e.g., P. aeruginosa
(Gellatly and Hancock, 2013) and P. syringe (Morris
et al., 2013), and due to their potential for promoting plant
growth and biotechnological applications, e.g., P. flu-
orescens (Loper et al., 2012) and P. putida (Wu et al.,
2011; Roca et al., 2013). Among this group, P. putida
has been widely used as a model environmental bacte-
rium free of undesirable biotechnological traits such as
virulence factors (Udaondo et al., 2015). Pseudomonas
putida strains can degrade a large array of chemicals,
including xenobiotic compounds, while exhibiting a
remarkable resistance to organic solvents and other envi-
ronmental stresses, making P. putida strains highly val-
ued biocatalysts (Nikel et al., 2014; Loeschcke and
Thies, 2015; Franden et al., 2018; Kohlstedt et al., 2018).
In addition, P. putida strains are amenable to genetic
modification and are therefore seen by many as ideal
workhorses for synthetic biology-based cell factories
(Nikel and de Lorenzo, 2018).

This high level of interest in P. putida has led to intense
genome-scale metabolic modelling efforts of strain
KT2440; the best-characterized strain and the first to be
completely sequenced (Nelson et al., 2002). Four genome
scale models (GEMs) for KT2440 have been previously
published, formally known as iJN746 (Nogales et al.,
2008), iJP850 (Puchalka et al., 2008), PpuMBEL1071
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(Sohn et al., 2010) and iJP962 (Oberhardt et al., 2011).
Recently, two new consensus models, formally iEB1050
(Belda et al., 2016) and PpuQY1140 (Yuan et al., 2017),
have been published based on the genome reannotation
of this strain and the integration of reactomes already pre-
sent in previous P. putida GEMs respectively. Unfortu-
nately, due to the nature of this approach, which only
allows the inclusion of new metabolic capabilities based
on computational evidence with scarce experimental vali-
dation, and/or from previous reconstructions, the available
GEMs of P. putida still lack coverage of the known metab-
olism captured in decades of P. putida literature. Thus,
these previous P. putida models fall into what we consider
to be models of primary metabolism. Thus, as often occurs
with current GEMs, their utility falls short of true and full
genome-scale studies (Monk et al., 2014).
We demonstrate here that all metabolic knowledge

available for a single species, even a genus, can be man-
ually collected and used for high-quality metabolic model-
ling of a particular strain capable of addressing deep
system-wide inquiries. We deliver a complete and manu-
ally curated metabolic reconstruction of P. putida
KT2440, named iJN1462. This detailed reconstruction
not only largely captures the metabolic features of this
strain, but it represents a computational scaffold for future
semi-automatic reconstruction of the Pseudomonas
group. To demonstrate this potential, we built 82 strain-
specific model drafts of metabolism for P. putida using
iJN1462 as a scaffold in order to analyse the shared met-
abolic capabilities of various P. putida strains. Overall,
the strains all possess broad metabolic capabilities indic-
ative of growth potential in a variety of environments and
have several strain-specific differences that could be
areas of investigation to identify strains of interest for
industrial applications.

Results

Reconstruction content and enhancements

iJN1462 represents a significant expansion over previous
reconstructions of P. putida KT2440 and is comparable
to other high-quality E. coli models. (Table 1, SI1 Fig. S2).
iJN1462 contains 1462 gene products (38% of the func-
tionally annotated protein products in the KT2440
genome), 2929 reactions and 2155 non-unique metabo-
lites. The reconstruction includes 410 unique citations
associated to reconstruction content and 2048 of the
reactions have at least one citation supporting its inclu-
sion (Table S1).
The major enhancements of iJN1462 over previous P.

putida reconstructions are found in its strain-specific
metabolism (Fig. 1A). Some of these subsystems demon-
strate well-known metabolic features of P. putida, such

as diverse growth sources for both carbon and nitrogen,
or tolerance to heavy metals and some industrially rele-
vant solvents. Additional subsystems, such as cell enve-
lope biosynthesis or fatty acid metabolic pathways, were
improved based on recent literature and experimental
efforts (Table S1). Altogether, these expansions help bet-
ter understand the capabilities of P. putida and define an
accurate biomass reaction for in silico experiments.

Pseudomonas putida is interesting due to its ability to
grow in a variety of environments. New catabolic path-
ways were included in iJN1462, with several also being
experimentally validated. These captured the metabolic
versatility of P. putida (Jiménez et al., 2010) as new sub-
systems, such as aromatic compound metabolism, and
several alternate carbon and nitrogen source subsystems
were included. For instance, the complete modelling of
the sarcosine, 2,5-dioxopentanoate, polyamines and
isovaleryl-CoA metabolism has been included based on
legacy data and completely validated by growth and gene
knockout analysis (SI1, Fig. S3-6). We also performed a
detailed reconstruction of alginate biosynthesis, a Pseu-
domonas polysaccharide with high biotechnological and
clinical interest. Furthermore, Pseudomonas has a robust
iron uptake metabolism that plays a major role in niche
colonization and pathogenesis (Cornelis, 2010; Wiens
et al., 2014). Accordingly, the iron metabolism has been
modelled, including the biosynthetic pathway for
pyoverdine (a non-ribosomal peptide acting as side-
rophore) of P. putida KT2440 based on structural studies
(Matthijs et al., 2009).

Pseudomonas putida catabolizes a large variety of
fatty acids (de Waard et al., 1993). Subsequently, the
metabolism of fatty acids has been extensively
expanded. In addition to saturated fatty acids, the catabo-
lism of triacylglycerides, mono and poly-unsaturated fatty
acids, phenylacyl and thioacyl fatty acids has been
reconstructed. The metabolism of unsaturated fatty acids,
present in other bacterial models such as iML1515 (Monk
et al., 2017), has also been revisited and extended by
the inclusion of a NADPH-dependent 2,4-dienoyl-CoA
reductase, which is required for the β-oxidation of polyun-
saturated fatty acids and substrate-specific cis-3-trans-
2-enoyl-CoA isomerase reactions (de Waard et al.,
1993). As a direct consequence, the potential substrates
for polyhydroxyalkanoate (PHA) synthesis via β-oxidation
have experienced a significant increase and 24 different
PHA monomers can be synthetized by iJN1462 (Fig. S7).
Even though the production of PHA is one of the most
prominent biotechnological capabilities of P. putida, the
PHA metabolism is absent in most of the previous GEMs
except for iJN746 and PpuMBEL1071 (Table 1).

Other areas of significant expansion involved cell enve-
lope biosynthesis and cofactor and prosthetic group bio-
synthesis (Fig. 1A). Within cell envelope biosynthesis,
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specific peptidoglycans from P. putida and the complete
lipopolysaccharide biosynthesis pathway have been
modelled in great detail based on available data
(Quintela et al., 1995; Rodríguez-Herva et al., 1999).
Modelling of the cellulose, rhamnose and trehalose
metabolism have also been included. Biosynthesis of
most cofactors and prosthetic groups known to be pre-
sent in Pseudomonas was revisited in iJN1462. Some of
them, such as biosynthesis of pyrroloquinoline quinone
(PQQ), are modelled here for the first time. These
updates allowed for the assignment of the correct elec-
tron carrier to quinoproteins of Pseudomonas and a very
accurate and strain-specific biomass reaction.

A detailed P. putida-specific biomass objective function
(BOF) based on existing experimental data was con-
structed to enable in silico experiments. The BOF
includes macromolecular composition (van Duuren et al.,
2013), glycerophospholipid content (Rühl et al., 2012),
murein composition (Quintela et al., 1995), lipopolysac-
charide (King et al., 2009) and species-specific soluble
metabolites such as pyoverdine (Matthijs et al., 2009)
and PQQ. A new value for non-growth associated growth
maintenance was also included based on recent findings
(Ebert et al., 2011). This highly strain-specific BOF con-
trasts with those present in previous reconstructions
which lack P. putida’s specific lipids, lipopolysaccharides,

Fig. 1. Comparison of iJN1462 to pre-
vious metabolic reconstructions.
A. Comparison of the number of reac-
tions in a subsystem for three P.
putida metabolic reconstructions.
Subsystems belonging to primary
and strain-specific metabolisms are
shaded in green and orange respec-
tively. B. A multi-correspondence
analysis (MCA) scatter plot showing
the multiple correspondence analysis
of the metabolic content, in terms of
reactions and metabolites, of avail-
able metabolic reconstructions (see
Monk et al., 2014). The amount of
explained variance represented by
each component is shown in paren-
theses. Reconstructions that are
close to each other in the diagram are
likely to have similar metabolic con-
tent. Most of the reconstructions
analysed cluster around the origin.
Reconstructions for Yeast (iND750
and iMM904) are significantly different,
including specific metabolic content.
Reconstructions of Enterobacterial
strains form a clearly differentiated
group. Finally, iJN1462 is located
far away from the origin, showing
very different reactome.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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peptidoglycans and most cofactors and vitamins
(Fig. S8). In addition, we formulated a core biomass reac-
tion including metabolites that are completely essential
for growth according to experimental reports (Feist et al.,
2007). The core BOF indeed describes a viable cellular
composition under rich nutritional conditions. In fact,
many of the metabolites missing from the CORE biomass
have been related to metabolic robustness but not essen-
tiality in P. putida. Among others, specific lipids such as
cardiolipin (involved in organic solvent resistant),
pyoverdine (responsible for providing iron under limita-
tion), PQQ (cofactor essential for the catabolism of cer-
tain alcohols), several vitamins and cofactors (involved in
specific carbon source catabolisms), and so forth. There-
fore, a strain having the cellular composition described
by the core biomass, although extremely fragile from a
metabolic robustness point of view, it should be likely a
viable cell. Finally, the availability of both biomass func-
tions in P. putida models represents an interesting
update and the possibility to provide more accurate pre-
dictions when compared with models having only one.
This is because while the core biomass function makes
sense for analyses such as the assignment of gene
essentiality under rich conditions or for strain designing
endeavours, the full biomass catches better carbon flux
distributions. Details of the new biomass reactions and
their formulation are depicted in SI 1 and Table S3.

The metabolic expansion of the reactome represented
by iJN1462 became evident when its content was com-
pared with 22 pre-existing GEMs by means of multiple
correspondence analyses (Tenenhaus and Young,
1985). While the previous P. putida reconstruction
iJN746 is located close to the centre of coordinates
together with most of the current GEMs, iJN1462 is
placed far away from the origin, thus suggesting its
higher and more organism-specific metabolic content
(Fig. 1B). Highlights this fact, iJN1462 includes 1501 new
reactions not found in any of the other models examined
(Fig. 1B, Table S6). The largest portion of these reactions
come from expanding P. putida’s metabolic capabilities
toward new substrates, with 255 new carbohydrate
metabolism reactions and 367 new transport reactions.
Lipid metabolism with 231 new reactions is the only other
subsystem responsible for a large number of new reac-
tions. Most other subsystems had between 25 and
100 new reactions unique to iJN1462. These new reac-
tions demonstrate the uniqueness of iJN1462 and just
how much previously non-modelled information is
contained.

Reconstruction validation

A large GEM with many genes and reactions does not
always equate to a high-quality GEM. In order to validate

iJN1462 as a predictive model of P. putida, in silico test
results were compared to several in vivo experiments.
Comparisons included phenotypes on different nutrient
sources, growth rates and measured carbon flux, as well
as gene essentiality as determined by knockout strains
and Bar-Seq experiments. Additionally, new standards
are being developed to help ensure newly developed
GEMs are standardized and of high quality. The Memote
tool was used to evaluate the model as compared to
other models (Lieven et al., 2018).

To assess the ability of iJN1462 to predict phenotypes,
we first evaluated all the potential carbon, nitrogen, sul-
phur, phosphorus and iron sources supporting in silico
growth (Table S2). iJN1462 was able to use a signifi-
cantly higher number of nutrients compared to previous
reconstructions (Fig. 2). iJN1462 can grow on 142 and
71 new carbon and nitrogen sources respectively, many
of which have never been experimentally reported as
nutrients in P. putida (Table S2). We experimentally vali-
dated the accuracy of the growth predictions by per-
forming growth screens (see Methods) with special
emphasis on those nutrients that have not been tested
thus far in P. putida (SI1 Table S2). The overall accuracy
of growth predictions was high, predicting 79% and 84%
(p-values of Fisher’s exact test were less than 10−12, and
overall Matthews correlation coefficient of 0.608) of the
growth phenotypes observed for carbon and nitrogen
sources respectively (Fig. 2, Table S2). Therefore,
iJN1462 largely captures the metabolic versatility of
Pseudomonas.

Comparisons of growth rate predictions and PHA pro-
duction rates (Table 2) with experimental values provided
further validation of the model. The prediction accuracy
of iJN1462 significantly exceeds that of previous P.
putida GEMs. However, iJN1462 grew faster than
KT2440, suggesting an incomplete adaptation of KT2440
to these sugars as carbon sources and/or certain over-
flow of metabolism. When the observed secretion rates
for gluconate and 2-ketogluconate were included in the
model as additional constraints, iJN1462 fits the experi-
mental growth rate on glucose. iJN1462 also had a high
level of accuracy concerning growth rate and production
rate of PHA when grown on octanoate with limited nitro-
gen and oxygen (Table 2). These experiments demon-
strate good capabilities to predict at least growth
phenotypes and rates.

Since accurate predictions of growth rates alone can-
not guarantee the quality of GEMs, we compared flux
predictions on glucose to experimentally reported values
(Blank et al., 2008). We found a good correlation
between predicted and experimental values, with
Kendall’s τ = 0.80, significantly higher than for the
iEB1050 and PpuQY1140 models, τ = 0.53 and τ = 0.68
respectively (Fig. 3, Fig. S12). A well-known trait of

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Pseudomonas is the activation of the pyruvate shunt as
a main source of oxaloacetate bypassing to the malate
dehydrogenase (MDH) (del Castillo et al., 2007; Blank
et al., 2008). Despite this alternative pathway being less
efficient from an energetic point of view, this feature of
Pseudomonas guarantees a high level of NADPH, which
is critical in providing metabolic robustness, including tol-
erance to oxidative stress (Blank et al., 2008; Chavarría
et al., 2012; Berger et al., 2014). iJN1462 fails to predict
the activation of the pyruvate shunt as an alternative
source of oxaloacetate since flux balance analysis
excludes suboptimal flux distributions (Orth et al., 2010).
We therefore performed a sensitivity analysis of flux

predictions as a function of the flux through pyruvate car-
boxylase (PC). In good agreement with experimental
results, increasing PC flux leads to a large flux decrease
through MDH, a significant increase in the flux through
Malic Enzyme (ME2), and a slight increase through the
TCA cycle, pyruvate dehydrogenase and pyruvate
kinase. When the experimental flux through PC was used
as an additional constraint, the accuracy in the flux distri-
bution prediction increased significantly (τ = 0.92)
(Fig. 3). In summary, the flux predictions demonstrate the
high accuracy of iJN1462, as well as the likely role of
the mechanisms fuelling metabolic robustness such as
the pyruvate shunt, as one of the main mechanisms

Fig. 2. Identification and validation of nutrients supporting iJN1462 growth. A. The number of nutrients supporting growth in previous GEMs of P.
putida, iJN1462, and the latest GEM of E. coli iML1515. B and C. A qualitative comparison of the growth-supporting carbon and nitrogen sources
respectively, as calculated using the iJN1462, iJN746, iEB1050 and PpuQY1140 reconstructions.

Table 2. Comparison of growth performance of iJN1462 with previous GEMs of P. putida.

Carbon source

(mmol gDW−1 h−1)

Uptake rate
Secretion rate
(Gluconate)

Secretion rate
(2-Ketogluconate)

Growth rate/PHA production rate
(PHAC6 + PHAC8) (h−1)/(mmol gDW−1 h−1) References

iJN746 iEB1050 PpuQY1140 iJN1462 In vivo
Gluconate 5.1 NA NA 0.58/NA 0.67/NA 0.37/NA 0.47/NA 0.43/NA del Castillo et al. (2007)
Glucose 6.3 NA NA 0.76/NA 0.91/NA 0.50/NA 0.61/NA 0.56/NA del Castillo et al. (2007)
Glucose 7.3 NA NA 0.86/NA 1.05/NA 0.59/NA 0.71/NA 0.73/NA Ebert et al. (2011)
Glucose 10.9 2.8 2.6 0.70/NA 0.81/NA 0.49/NA 0.57/NA 0.57/NA Blank et al. (2008)
Octanoate 3.4 NA NA 0.31/1.9 NA/NA NA/NA 0.2912/1.11 0.29/1.5 Escapa et al. (2012)

Constraints used are underlined. NA, not applicable. iEB1050 and PputQY1140 models lack of Octanoate and PHA metabolisms. For growth on
octanoate as carbon source, nitrogen and oxygen uptake were constrained to 3.1 and 13.5 mmol gDW−1 h−1 respectively.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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disturbing the linearity of genotype–phenotype relation-
ships. iJN1462 can thus predict growth capabilities,
growth rates and flux distributions for KT2440 with high
accuracy, at a comparable level to the well-developed E.
coli model.

Gene essentiality data contextualization within iJN1462

The validation of GEMs through prediction of gene
essentiality is a powerful way to assess and improve the
accuracy of prediction while providing a suitable platform
for the contextualization of knockout mutant studies at
the genome-scale (Förster et al., 2003; Covert et al.,
2004; Oh et al., 2007). We performed a gene essentiality
analysis in rich medium and then mapped the predicted
essential genes with the knockouts available in the Pseu-
domonas Reference Culture Collection (PRCC) (del Cas-
tillo et al., 2007). This approach defined an accurate in
silico LB (iLB) medium and a core BOF (See SI1,
Table S3). A total of 114 essential genes were predicted
under these conditions (Fig. 4, Table S4). Only eight
gene knockouts (7%) predicted as essential were found
to be not essential in PRCC, thus being false-negative
predictions. The accuracy of iJN1462 was further

evaluated using glucose minimal media against an exis-
ting experimental data set (Molina-Henares et al., 2010).
Seventy-eight conditionally essential genes in glucose
minimal media were predicted after excluding those also
essential in iLB. Forty-seven of the 78 predicted glucose
conditionally essential genes as well as seven predicted
glucose conditionally non-essential that were available
from the PRCC were experimentally validated to assess
the gene-essentiality accuracy compared with previous
models (Fig. 4B and C; Table S4). We found that
iJN1462 was significantly more accurate than iJN746,
iEB1050 and PpuQY1140 with 85% accuracy compared
to 57%, 65% and 63% (two-sided p-values of Fisher’s
exact test was <10−3) respectively. The strain-specific
BOF of iJN1462 allowed the correct prediction of several
genes involved in cofactor biosynthesis as essential in
contrast to previous reconstructions. Interestingly, similar
analysis performed with a GEM of P. aeruginosa mat-
ched in vivo essentiality for only 41% of in vivo essential
genes while providing an overall accuracy of 83.9%
(Oberhardt et al., 2011). Overall, the accuracy of iJN1462
is in the range of other high-quality models such as E.
coli, 93.4%, (Monk et al., 2017) and Bacillus subtilis,
93.4% (Tanaka et al., 2013).

Fig. 3. Validation of flux predictions
and overall prediction accuracy.
A. Robustness analysis of flux predic-
tions in iJN1462 obtained by varying the
flux through Pyruvate Carboxykinase
(PC). The vertical line indicates reported
flux for PC (3.1 mmol hr−1/gCDW). B
and C. Comparisons between experi-
mentally reported flux values (x-axis) in
the central metabolism of P. putida
growing on glucose and predicted flux
values obtained with iJN1462 (y-axis).
Reaction fluxes are normalized to the
glucose uptake rate. Fluxes across the
Pyruvate Carboxylase (PC), Malic
enzyme (ME2), Pyruvate kinase (PYK)
and Malate Dehydrogenase (MDH) are
indicated. In (B) no constraints are
placed on internal fluxes, while in C
Pyruvate Carboxylase flux was con-
strained to be 3.1 mmol h−1/gCDW after
having performed sensitivity analysis.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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Further model validation was performed using data
from BarSeq experiments with P. putida using three dif-
ferent carbon sources: glucose, acetate and p-coumaric
acid in minimal media (Rand et al., 2017; Price et al.,
2019; Thompson et al., 2019). Sensitivity analysis was
performed to identify a proper cut-off of gene fitness that
corresponds with gene essentiality in the model (SI 1).
The sensitivity analysis identified a range of possible cut-
offs that had similar Matthews correlation coefficients.
Using cut-offs ranging from −2.15 to −3.56 resulted in
Matthews correlation coefficients that were at least 95%
of the maximum value obtained using the selected cut-off
of −2.7. A cut-off of −2.7 was also validated by compar-
ing the conditionally essential genes determined by the
BarSeq experiments and from the PRCC knockout col-
lection. Thirty-seven of the 44 possible genes were found
to be conditionally essential in both data sets. Comparing
computational results to the BarSeq data, the accuracy
was 91% for all three carbon sources, with a Matthews
correlation coefficient of 0.434, 0.438 and 0.409 for glu-
cose, acetate and p-coumaric acid respectively. The
overall accuracy was 91% with a correlation coefficient of

0.426 (Table 3, Table S7). Similar comparisons using
models of Rhodobacter spaeroides (Burger et al., 2017)
and Synechococcus elongatus (Broddrick et al., 2016)
only had 63% and 74% accuracy respectively. These
experiments demonstrate that iJN1462 accurately
predicted the genotype–phenotype relationships regard-
ing gene essentiality in a variety of conditions.

Model evaluation using Memote

The completed iJN1462 model was also evaluated using
the Memote tool (https://memote.io/) (Lieven et al., 2018)
in order to define its completeness as a model and ana-
lyse potential flaws or shortcomings. The model’s overall
score was 91%, which suggests a very good model com-
pleteness (SI2). The main reason for the model not scor-
ing higher was a lack of annotation to outside references
for all genes, metabolites and reactions in the GEM. This
indicates that the model might be somewhat difficult to
use with certain automated tools or scripts, but its accu-
racy or usability should not be affected. The model

Fig. 4. Gene essentiality analysis and validation. A. Genes predicted to be essential in the iLB medium (i.e., rich medium) were compared with
the gene content of iJN1462 and single-gene knockouts present in the PRCC screened in rich medium. Eight (7% of total predictions) false posi-
tives were predicted by iJN1462. B. The capabilities of iJN1462, iJN746, iEB1050 and PpuQY1140 for predicting essential genes in glucose mini-
mal medium were compared to the experimental results from the PRCC Collection. C. Tabulated results for iJN1462 are given to demonstrate its
accuracy. Gene essentiality prediction was correct for 85.2% of tested genes. Blue and green denote genes that were correctly predicted as
essential and non-essential respectively. Red and tan denote incorrectly predicted genes. Genes not included in a GENRE are shown in black.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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scored 97% for the important category of consistency,
which represents accuracy in stoichiometry, mass bal-
ances, charge balances, connectivity of metabolites and
reaction cycles. The Memote analysis demonstrated that
iJN1462 is a highly complete and detailed model and can
be used as a reference for other GEM constructions.

Functional assignment of metabolic capabilities of P.
putida based on multi-strain modelling

Strain-specific GEMs have been produced that take
advantage of a highly curated reference strain to identify
unique metabolic capabilities that can be used to study
evolutionary histories and nutrient niches (Orth et al.,
2011; Monk et al., 2013; Bosi et al., 2016; Seif et al.,
2018). To show the potential of iJN1462 as a template for
modelling the Pseudomonas group, we performed a
reconstruction of 82 P. putida strains with publicly avail-
able, high depth genomes (See Methods, Table S5). This
approach, although exclude the inclusion of the strain-
specific metabolic content, resulted in highly complete
metabolic models. Analysis of these models paved the
way for research into the metabolic abilities and diversity
of different strains of P. putida. Furthermore, by keeping
only those genes present in all P. putida strains, a core-
genome metabolic model of P. putida (PP_CORE) was
obtained. PP_CORE possesses only the common meta-
bolic capabilities of all the sequenced strains of this spe-
cies and allows for comparison of where genes, reactions
and subsystems are conserved across strains.

Through the multi-strain reconstruction, we demon-
strated that P. putida strains have diverse metabolic
capabilities, yet they also maintain broad growth potential
across the whole species. We evaluated the metabolic
capabilities of each model by analysing the array of car-
bon sources supporting growth. We found that the strain-
specific models shared the high metabolic versatility of
iJN1462. Eight percent of the carbon sources available in
the models had identical growth phenotypes, with
165 carbon sources able to support growth for all strains.
Similar multi-strain reconstructions of 47 E. coli strains
and 64 S. aureus strains had only 61% and 24% agree-
ment in growth phenotypes across different carbon
sources in aerobic conditions. Meanwhile, 61 of the

226 carbon sources in P. putida featured variation
between models as shown in Fig. 5.

Analysis of the differences in metabolic capabilities
between strains could help identify possible differences
between the environmental niches that the individual
strains fulfil. Figure 5C illustrates some of the differ-
ences in a subset of the carbon substrates on which P.
putida can grow. Lignin-derived monomers and other
phenols show some of the largest diversities in catabolic
capabilities between strains. Gallate is one of the least
conserved substrates for growth (22% of strains with
predicted growth), while ferulate (35%) and coumarate
(35%) are equally not highly conserved. Gallate is nor-
mally derived from the syringyl component of lignin,
while ferulate and coumarate are derived from the
guaiacyl and p-hydroxyphenol components. The
makeup of lignin can vary significantly between plant
species resulting in different abundances of these
monomers when the lignin is broken down (Campbell
and Sederoff, 1996). There are many strains capable of
displaying growth using one group of compounds but
not another, possibly indicating that they may have
developed near varieties of plants that had different
ratios of lignin monomers.

The PP_CORE model helped identify conserved sub-
systems that define the P. putida species. The core
model identified 1073 genes found in at least 95% of the
reconstructed strains, as seen in Fig. 5A. Most of the
reactions catalysed by genes found in the core genome
are involved in central cell growth and metabolism. The
most conserved systems are Cofactor and Prosthetic
Group Metabolism (88.9%), Lipid Metabolism (88.5%),
Energy Production and Conversion (82.8%) and Nucleo-
tide Metabolism (82.7%) as seen in Fig. 5B. In contrast,
the Inner Membrane Transport, Outer Membrane Trans-
port and Alternate Growth Substrate Systems were some
of the least conserved systems at 63.6%, 77.9% and
74.8% respectively. This demonstrates that the species
is likely to grow on a wide variety of substrates. Other
strains of P. putida have demonstrated an ability to utilize
substrates as diverse as 2,4,6-trinitrotoluene and chlori-
nated aliphatic acids (Slater et al., 1979; Park et al.,
2003). Overall, this analysis shows that metabolic versa-
tility and broad growth capabilities are general features of
the P. putida species, irrespective of the strain.

Table 3. Results from comparing BarSeq in vivo fitness data with in silico simulated growth data utilizing different carbon substrates for growth.

Carbon source True positive True negative False positive False negative Accuracy Matthews correlation coefficient

Glucose 1011 37 13 87 91.3 0.434
Acetate 1011 37 12 88 91.3 0.438

Coumarate 1000 40 22 86 90.6 0.409
Overall 3022 114 47 261 91.1 0.426

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269

Metabolic modelling of Pseudomonas putida 263

 14622920, 2020, 1, D
ow

nloaded from
 https://am

i-journals.onlinelibrary.w
iley.com

/doi/10.1111/1462-2920.14843 by C
ochraneB

ulgaria, W
iley O

nline L
ibrary on [07/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Discussion

A detailed metabolic model is a powerful tool for ana-
lysing the systems metabolic properties of its target
organism (Nam et al., 2012; Nogales et al., 2012;
Chang et al., 2013). The level of completeness and
accuracy of iJN1462 makes it one of the largest and
highest-quality genome-scale metabolic reconstructions
built to date. The thorough reconstruction process
allowed for detailed modelling of P. putida catabolism
and anabolism beyond what was captured by previous
models (Fig. 2). The high level of detail and accuracy in
iJN1462 also enabled it to be used as a template for
other model reconstructions of different P. putida
strains, in order to explore the diversity of the species.
This was a major contribution to the exploration of the
broad metabolic capabilities and potential usefulness of

P. putida strains. iJN1462 expands the metabolic
reactome available for computation, including many of
the unique metabolic pathways of Pseudomonas, a bac-
terial group with significant biotechnological and clinical
interest (Silby et al., 2011; Nikel et al., 2014).

The accuracy of the iJN1462 model’s predictions has
been validated under experimental conditions and it fea-
tures demonstrable improvements over previous models
(Table 2). C13 flux analysis showed a very high correla-
tion to in silico flux prediction. Adjustment of flux through
the PC reaction resulted in markedly improved correlation
(Fig. 3). This could be indicative of a metabolic cycle in
P. putida that results in an improved ability to respond to
changes in the environment. In laboratory and in silico
steady-state settings, the flux results in suboptimal
growth, but in P. putida’s native environments it could
result in faster responses to environmental change.

Fig. 5. Multi-strain comparison of P. putida species. A and B. The number of reactions predicted to be in the core-genome vs. the pan-genome
of P. putida by grouped subsystems. Panel B provides a breakdown of subsystems involved in growth on alternative substrates. The poly-
hydroxyalkanoate metabolism subsystem is excluded from B and had 152 of 152 reactions in the core model. C. Dark blue shows genes in at
least 95% of the strain models and considered to be part of the core genome. The lighter blue shows the accessory genes, which are responsible
for the diversity between different strains. D. A clustered heatmap of growth capabilities of P. putida strains on select carbon sources. Clustered
differences could be due to variances in environmental niches.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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Comparison with the PRCC and BarSeq knockout data
also showed very high correlations for conditionally
essential genes, although some areas for improvement
were identified. The current level of accuracy suggests
that the gene–protein relationships included are mostly
accurate and well supported. BarSeq data could also be
used for future improvements of the model by providing
genome-wide gene essentiality data for a wider variety of
growth conditions. A single experiment can demonstrate
the changes in fitness that every individual gene is
responsible for in a given set of growth conditions. In the
future, this could be used to identify missing or mis-
characterized genes for this organism.

Aside from experimental validation, iJN1462 was also
validated as a model using Memote. The Memote analy-
sis demonstrated that it is a well-characterized and well-
defined model. Although it did not receive a perfect
score, it scored highly in the important category of stoi-
chiometric consistency and was demonstrated to have
very few flaws. The Memote analysis proved to be an
effective way to quickly analyse the model and determine
improvements that would make it more accurate and use-
ful to other researchers. While there is still room for
improvement of the P. putida model, particularly in linking
model contents to external resources, we demonstrate
here that iJN1462 serves as a highly accurate represen-
tation of our current understanding of P. putida KT2440
metabolism.

We demonstrated that iJN1462 is a useful tool for
reconstructing other P. putida strains. Eighty-two GEMs
of P. putida strains were successfully created, using
iJN1462 as a template. The reconstruction and analysis
of the diversity of P. putida is comparable to what was
previously done for the better characterized E. coli (Monk
et al., 2013). The functional comparison between the P.
putida strains highlighted that metabolic versatility and
robustness are metabolic traits inherent to the whole P.
putida species. Even as draft reconstructions, which still
require careful manual curation and the addition of strain-
specific metabolic content, all the models demonstrated
growth capabilities in a wide variety of conditions includ-
ing lignin derivate metabolites. Despite lignin degradation
not having been traditionally studied in microorganisms
other than fungi, recent reports have highlighted the role
of bacteria being able to break down lignin (Bugg et al.,
2011; Huang et al., 2013). Interestingly, several P. putida
strains, including KT2440, have been found displaying
certain lignin degradation capabilities. Upon the increas-
ing metabolic knowledge and synthetic biology tools
available for this bacterial group (Franden et al., 2018;
Kohlstedt et al., 2018; Nikel and de Lorenzo, 2018) these
recent findings are driving important efforts toward the
use of lignin and recalcitrant lignin-derived metabolites as
promising feedstock toward the sustainable production of

important fine chemicals and industrial building blocks
using P. putida (Linger et al., 2014; Johnson et al., 2017;
Kohlstedt et al., 2018). This complex metabolism of aro-
matic compounds can now be optimized and redesigned
with the aim of producing fine chemicals using the large
computational arsenal provided by COBRA approaches
within the context of well-curated and strain-specific P.
putida GEMs. Thus, the collection of P. putida draft
GEMs described here represents a first step toward the
systematic analysis of the full space of biological rev-
alorization of lignin and lignin-derived monomers using P.
putida strains.

Furthermore, the addition of known or theorized meta-
bolic capabilities of different P. putida strains could
greatly contribute to the pan-genome of P. putida. It is
likely that if complete genome reconstructions were to be
carried out for all available strains of P. putida, its pan-
genome and metabolic capabilities would grow increas-
ingly larger as the metabolic versatility of the P. putida
species is revealed.

Having GEMs of different strains could aid in the identi-
fication of strains with potential for industrial applications.
Even draft reconstructions can help identify which strains
have pathways of interest and compare them with each
other in order to identify highly efficient sets of enzymes.
Identification of which GEMs have mechanisms for toler-
ance to solvents could also be used to identify strains
that might serve as a good starting platform for the bio-
production of industrially relevant compounds. Altogether,
the multi-strain reconstruction offers an excellent starting
point for identifying which strains might be of interest
without having to perform wet-lab experiments for every
possible strain.

Material and methods

Metabolic reconstruction process of P. putida KT2440

The overall workflow for the reconstruction process is
shown in SI1 (Fig. S1), and it is detailed in SI1. We
followed a manual and iterative tri-dimensional approach
based on (i) genome annotation, (ii) biochemical legacy
knowledge and (iii) phenotypic experimental validation.
As a result, a more accurate assignment of function to
297 genes was achieved (Table S1).

Constraints-based analysis

A detailed description of methods and constraints used
for analysing the models can be found in SI1. iJN1462
was initially constructed on SimPheny and exported as
an SBML file. Updates were made using Python and the
Cobrapy package. COBRA Toolbox v2.0 (Schellenberger
et al., 2011) within the MATLAB environment (The

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 22, 255–269
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MathWorks Inc.) was used to analyse the models.
Tomlab CPLEX and Gurobi were used for solving the lin-
ear programming problems.

Growth experiments on carbon and nitrogen sources

Procedures for growth experiments and knockouts analy-
sis are found in SI1.

Gene essentiality predictions on iLB and glucose

The singleGeneDeletion function in the Cobra Toolbox
(Schellenberger et al., 2011) with the minimization of
metabolic adjustment algorithm (Segrè et al., 2002) were
used to simulate knockouts. Additional constraints are
available in SI1.

Pseudomonas putida multi-strain genome-scale
modelling

The multi-strain modelling was performed according to
established procedures (Orth et al., 2011). We con-
structed a gene orthology matrix between KT2440 and
the sequenced P. putida strains (Table S5). We then
identified the genes present in iJN1462 for which no
orthologous gene was found in each of the strains
analysed and subsequently removed the corresponding
GPR from iJN1462 to obtain the strain-specific models.
Gap filling was then performed to ensure growth capabili-
ties on glucose. Additional details can be found in SI1.
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