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• Dataset of 205 biomass measurements 
and 450 hyperspectral images was 
generated.

• Three machine learning models trained 
to predict biomass from spectral and 
image data.

• FCN model achieved the best accuracy 
with a mean absolute error of 37.33 mg/ 
L.

A R T I C L E  I N F O

Keywords:
Non-invasive monitoring
Machine learning
Photobioreactors operation
Cyanobacteria monitoring

A B S T R A C T

Hyperspectral imaging combined with machine learning offers an innovative approach for biomass monitoring at 
laboratory and industrial scale, but a proof-of-concept linking hyperspectral data to biomass prediction remains 
limited. This study fills that gap by creating a dataset with 205 biomass measurements and 450 hyperspectral 
images from three cyanobacteria-rich microbiomes. Data were acquired using a compact push-broom camera, 
followed by image preprocessing to extract spectral information for training three machine learning algorithms 
based on either spectral or image data. The Fully Connected Neural Network model achieved the highest ac-
curacy, predicting biomass levels with a mean absolute error of 37 mg/L (below 4 %). Notably, a simplified 
multispectral model using only three wavelengths reached comparable accuracy, highlighting the potential of 
low-cost multispectral systems. This study demonstrates the feasibility of hyperspectral and multispectral im-
aging for biomass estimation in cyanobacterial cultures and supports the development of real-time, non-invasive 
monitoring tools for photosynthetic bioprocesses.
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1. Introduction

In situ and continuous monitoring techniques are essential to ensure 
efficient operation of photosynthetic photobioreactors (PBRs) for bio-
products production. These bioproducts can range from biomass itself to 
specific compounds, such as pigments, bioplastics, or lipids, among 
others (Altamira-Algarra et al., 2024b; Senatore et al., 2023). Accurate 
biomass quantification is particularly important for optimizing pro-
ductivity and process control. However, current biomass measurement 
techniques are often time-consuming, costly, or require destructive 
sampling. Direct biomass measurements such as dry weight determi-
nation and cell counting offer high precision but are labor-intensive and 
invasive. In contrast, indirect methods like optical density at 750 nm 
(OD750), turbidity, or chlorophyll-based fluorescence are rapid and non- 
invasive but can lack robustness and reproducibility due to physiological 
changes in the culture or environmental variability (Kudela et al., 2015; 
Ogashawara et al., 2013).

Hyperspectral and multispectral imaging systems provide a prom-
ising alternative. These technologies enable the acquisition of both 
spatial and spectral information, allowing detailed characterization of 
cultures in a non-invasive and continuous manner.

First, unlike single-point optical methods, hyperspectral imaging 
captures reflectance across a wide spectral range, enabling detection of 
multiple biological signals including pigments, biomass concentration, 
and physiological state (Lorenzo et al., 2022; Pääkkönen et al., 2024). By 
correlating specific spectral bands with known biomarkers, such as 
chlorophyll levels or other pigments, it becomes possible to estimate 
culture’s condition and assess its overall productivity. This level of detail 
is often unattainable with conventional methods that rely on single 
measurements of chlorophyll, optical density or turbidity. For example, 
turbidity is often used to extrapolate volatile suspended solids (VSS) in 
experimental setups (Altamira-Algarra et al., 2024a), but this estimation 
introduces high variability and lacks precision (Altamira-Algarra et al., 
2024a). In contrast, hyperspectral imaging provides a more consistent 
and reliable indicative estimation of biomass.

Secondly, hyperspectral imaging allows for real-time monitoring of 
biomass without the need for destructive sampling, a common limitation 
of current techniques such cell counting or dry weight determination. 
This non-invasive nature not only preserves the culture but also reduces 
the need of human manipulation, minimizing the risks of contamination. 
Lastly, hyperspectral imaging has the potential to revolutionize biomass 
monitoring. By integrating this technology into sensors, it enables 
continuous tracking of culture parameters providing real-time data. 
Furthermore, when combined with machine learning algorithms, 
hyperspectral imaging can play a pivotal role in developing predictive 
models for biomass estimation. These models can streamline the moni-
toring process, enhance decision-making, and support more informed, 
data-driven strategies in industrial applications, ensuring greater effi-
ciency and sustainability in production systems.

Despite its advantages, their application for biomass measurement 
has been explored in only a few studies, primarily focusing on micro-
algae species such as Chlorella vulgaris, Desmodesmus maximus, and Tet-
radesmus obliquus (Murphy et al., 2014; Pääkkönen et al., 2024; Salmi 
et al., 2022; Xu et al., 2020). Hyperspectral imaging techniques to 
facilitate real-time estimation of culture metrics in cyanobacteria cul-
tures has been only used in one study (Lorenzo et al., 2022). In this 
publication, those techniques were applied at both lab and pilot scales, 
where the authors correlated biomass (measured as cell dry weight) with 
spectral data obtained from hyperspectral cameras. Specifically, authors 
identified unique spectral signatures based on the absorption of light by 
different pigments and linked these spectral signatures to biomass levels. 
The results of this study highlighted the potential of hyperspectral im-
aging for tracking biomass growth in microalgal cultures and its versa-
tility across different scales. However, it was limited by a small sample 
size, focusing solely on single strain cultures of the cyanobacterium 
Synechocystis sp. with a restricted number of samples.

Despite the potential of hyperspectral imaging, further research is 
needed to refine these methods for biomass estimation. This study aims 
to address this gap by developing an affordable biomass estimator based 
on coupling spectral imaging and Artificial Intelligence (AI) for cyano-
bacteria cultivation. To do so, it is imperative to have a broad dataset of 
hyperspectral images at different biomass levels and the corresponding 
biomass measurements. To the authors’ knowledge, there is no dataset 
that contains such information. To address this challenge, we cultured 
three cyanobacteria-rich microbiomes dominated by the cyanobacte-
rium Synechocystis sp. to generate comprehensive datasets that cover 
biomass levels across cyanobacterial growth phases. Each dataset is 
linked to one microbiome and includes data from multiple growth 
curves experiments, with associated environmental parameters such as 
temperature and pH. As a proof of concept, machine learning models 
were trained on both spectral and image-based data to predict biomass 
concentration, demonstrating a promising approach for continuous, 
non-invasive monitoring in photobioreactors (PBRs).

2. Materials and methods

2.1. Experimental data

Three microbiomes rich in Synechocystis sp. collected in (Altamira- 
Algarra et al., 2023), named R1, R3 and CW2 were used as inoculum for 
3 L glass vertical cylindrical photobioreactors (PBRs) of 2.5 L working 
volume (Fig. 1a). The cultures started by inoculating biomass to reach a 
concentration of 100 mg/L volatile suspended solids (VSS). BG-11 me-
dium was used with modified concentrations of bicarbonate (as a source 
of inorganic carbon), nitrogen, and phosphorus (100 mg IC/L, 50 mg N/ 
L, and 0.1 mg P/L), aimed at favoring the growth of cyanobacteria over 
competing phototrophic organisms (Altamira-Algarra et al., 2024b). 
Illumination of the reactors was kept at 30 klx (approx. 420 μmol pho-
tons/m2⋅s1) by 200 W LED floodlight (placed at 15 cm from the re-
actors). This illumination followed a 15:9-hour light-to-dark cycle 
during growth. pH levels were continuously monitored using a pH probe 
(model HI1001, HANNA instruments, Italy) placed inside the reactors. 
pH of the cultures was controlled within a range of 7–9 by pulse CO2 
injection into the reactors. Reactors were continuously agitated by a 
magnetic stirrer ensuring complete mixing. Culture temperature was 
kept at around 30 ◦C. Additional information on the reactors and their 
operation can be found in (Altamira-Algarra et al., 2024a,b).

Three distinct datasets corresponding to the different microbiomes 
were collected. Each dataset includes multiple growth curves, with each 
curve representing a separate experiment. For each dataset, several 
growth curves were analyzed (experiments), as summarized in Table 1. 
Dataset 1 included five different growth curves for microbiome R3. 
Samples were collected three times per day, and for each sample, 
biomass as VSS, pH, temperature, and hyperspectral imaging data were 
analyzed in both transmittance and reflectance modes. Dataset 2 and 3 
consisted of microbiome R1 and microbiome CW2, respectively; in both 
datasets, one sample was taken per day and analyse for VSS, pH, tem-
perature, and hyperspectral imaging in transmittance mode. Each 
experiment involved a single inoculation of cyanobacteria, and subse-
quent data points were collected as the cells grew under the same initial 
conditions.

2.2. Sample collection and analysis

2.2.1. Biomass analysis, pH and temperature
Biomass was quantified as VSS via a drying process of a 10 mL sample 

extracted from the photobioreactor and determined according to pro-
cedures in (Amerian Public Health Association, 2012). pH levels were 
continuously monitored using a pH probe (model HI1001, HANNA in-
struments, Italy) placed inside the reactors. The pH data were recorded 
at 5 min intervals using software PC400 (Campbell Scientific). Tem-
perature was monitored using a TESTO 174H data logger, equipped with 
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Fig. 1. Hyperspectral imaging setup. a) Photobioreactors setup for cyanobacterial microbiomes growth experiments. b) Hyperspectral camera and setup for image 
acquisition. c) Hyperspectral imaging processing steps: 1. Input image consisting on a 3D matrix containing the 300 2D image, together with the mean spectrum 
(represented in dark blue) and the standard deviation (depicted in a lighter blue shade). 2. Segmentation; 3. Cropping; 3 Mean pixel intensity spectra for each pixel in 
the region of interest. Standard Normal Variate of the spectra; Output spectra.
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a TC temperature sensor and an internal capacitive humidity sensor. The 
device operates within a measurement range of –20 to + 70 ◦C, with a 
temperature accuracy of ± 0.5 ◦C and a relative humidity range of 
0–100 % RH (non-condensing atmosphere). Temperature sensor was 
placed adjacent to the photobioreactor (PBR). pH and temperature 
readings were recorded each time a sample was extracted for biomass 
analysis and imaging.

2.2.2. Hyperspectral image acquisition
Samples (5––10 mL) for image acquisition were taken from each PBR 

periodically as depicted in Table 1. The hyperspectral measurements 
(see supplementary materials) were acquired in 300 specific wave-
lengths covering the visible and part of the near infrared (IR) spectra 
(394.46 nm to 1038.27 nm) in two modes: transmittance and reflec-
tance. These 300 images at specific wavelengths constitute what it is 
called a hypercube. For all samples, hyperspectral hypercubes were 
captured in duplicate or triplicate by re-imaging the same sample after 
shaking. In these cases, two or three images correspond to a single 
biomass measurement. For Dataset 1, hypercubes were acquired in both 
transmittance and reflectance modes, whereas for Datasets 2 and 3, 
imaging was performed only in transmittance mode. The acquisition of 
300 spectral bands, ranging from 400 to 1000 nm, provides a detailed 
spectral signature essential for distinguishing subtle variations in the 
optical properties of the samples (see supplementary material). This 
high spectral resolution enables the identification of specific absorption 
and reflectance features that correlate with the chemical and physical 
characteristics relevant to our study. Moreover, it facilitates advanced 
feature selection and dimensionality reduction techniques, enhancing 
the performance and generalizability of Machine Learning models. 
Therefore, the 300-band configuration, combined with an extensive 
dataset of 450 hyperspectral cubes and 205 correlated VSS measure-
ments (Table 1), was instrumental in building a robust predictive 
model.”.

2.2.2.1. Hyperspectral technology. Images were acquired with the Pika L 
camera system from Resonon based on push broom technology. A 
detailed scheme of the technology is shown in Fig. 1b. It consists of a 
small and compact hyperspectral sensor adapted to field measurements. 
The sensor covers a spectral range from 400 to 1,000 nm, with 281 
spectral channels. It has a spectral resolution of 2.7 nm FWHM, with a 
spectral bandwidth of approximately 2.1 nm. The camera features 
spatial pixels of 900 and a max frame rate of 249 fps. The sensor has a 
quantum efficiency higher than 55 % (55 % @ 700 nm and reaching 
more than 70 % between 500 and 600 nm). Global system quantum 
efficiency (Q.E.) is higher than 55 % in the range from 500 to 600 nm. A 

20 mm focal lens objective allowed working directly on samples 
collected directly from the PBRs. For analysis and acquisition, Spec-
tronon software from Resonon was used, as it has a complete library 
with image processing tools and allows integration of Python custom-
ized plugins.

2.2.2.2. Transmittance and reflectance acquisition modes. The Benchtop 
System from Resonon (Fig. 1b) assembled with a Pika-L hyperspectral 
camera (https://resonon.com/Pika-L) can acquire images either in 
transmittance (transmitted light) as well as reflectance (reflected light) 
modes. Samples were located in round borosilicate glass Petri dishes 
with a diameter of 55 mm and a height of 15 mm that sit onto a clear 
stage and can be illuminated from either above (reflectance) or below 
(transmittance). During data acquisition the stage moves, translating the 
sample beneath the imager. The imager and stage are controlled using 
Spectronon software. Altogether, this system combined with the 
hyperspectral camera is designed to provide high-quality imaging, with 
features such as low stray light, low optical distortions, and excellent 
imaging quality.

2.2.2.3. Calibration and image parameter adjustment. The calibration 
process for hyperspectral system consists in the correction of the flat 
field illumination and the correction of image consistency (the param-
eters of the stepper motor that control the table in which the sample is 
placed are defined in order to ensure good image reconstruction and 
avoid distortion). For the correction of flat field illumination, it is 
necessary to acquire one dark frame (dark reference), recorded with no 
light incident on the camera sensor (covering the lens of the hyper-
spectral camera), and to record a white frame with a material of known 
reflectance, in order to reach the maximum illumination. This process is 
done once before each experimental campaign. For white reference 
acquisition, in reflection configuration, we use a white Teflon plate, 
which has high reflectivity, placed in the sample location; for trans-
mission configuration, we directly capture light coming from light 
source (light is guided with optical fiber from halogen source to the 
homogenization panel). Data are corrected automatically by the 
hyperspectral system following this equation: 

C = rref ⋅
R − D
W − D 

Where C is the corrected frame, rref (scalar) is the reflectance of the 
reference material (often assumed to be 1), R is the raw camera frame to 
be corrected, W is the white reference frame, and D is the dark reference 
frame.

Even if the white background may contribute to minimal reflectance 
interference, the calibration and normalisation process mitigate its ef-
fects. Additionally, to reduce potential other possible source of errors, all 
the images were acquired under the same controlled illumination con-
ditions to ensure repeatability in the measurements.

2.3. Data-sets preparation for ML models

2.3.1. Hyperspectral image pre-processing
Image pre-processing was applied to obtain the spectral information 

contained within the hyperspectral images. Each captured image con-
sists of a 3D matrix (cube) containing three hundred 2D images, one per 
wavelength (Fig. 1c). The standard deviation on the spectra approxi-
mates ± 5 % of the central value up to 800 nm. Beyond 800 nm, the 
error magnitude increases significantly. (Data estracted from Resonon 
Software).

The representative spectral information of each cube is measured as 
the mean pixel intensity for each wavelength. As a result, three hundred 
mean pixel intensity values constitute the spectral data (Fig. 1c).

A slight increase in spectral variability was observed beyond 800 nm. 
This is likely due to several combined factors, including reduced quan-
tum efficiency of the CMOS sensor used (Pika L, Resonon Inc.), which 

Table 1 
Overview of datasets used for image acquisition showing microbiome type, 
experiment (growth curve) total growth days, number of biomass samples, and 
the number of hyperspectral images. For all samples, images were taken in 
triplicates.

Microbiome Experiment Growth 
days

Samples N◦ of 
hypercubes

Set 
1

R3 1 19 29 59
2 19 29 71
3 50 53 112
4 44 55 138
5 28 19 30

Set 
2

CW2 6 7 3 5
7 7 2 2
8 7 2 3
9 7 3 5
10 7 3 5

Set 
3

R1 11 7 3 6
12 7 3 4
13 7 3 4
14 7 3 6
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declines significantly in the NIR range (see supplementary material), as 
well as decreased optical transmission from the grating and lens com-
ponents (see supplementary material)(Holst & Lomheim, 2018). Addi-
tionally, water absorption bands in the NIR, particularly around 840 nm 
and 970 nm, can reduce reflectance signal and increase noise (Gao et al., 
2009; Raj et al., 2021). These factors contribute to a lower signal-to- 
noise ratio in this spectral region. Further details and discussion of 
these potential sources of variability are provided in Supplementary 
Note S1.

2.3.1.1. Segmentation. The segmentation process involves identifying 
the pixels corresponding to the region of interest. Different approaches 
were used based on the image characteristics using either thresholding 
or a circle detection algorithm.

For the thresholding-based segmentation, the process was applied to 
the image corresponding to the 601.39 nm wavelength from the 
hyperspectral hypercubes. This wavelength was selected because it 
provided a clear contrast between the sample (Petri dish content) and 
the background, facilitating accurate segmentation (Fig. 1c). Other 
wavelengths could also serve this purpose, as several displayed suffi-
cient separation between sample and background. Before thresholding, 
the selected wavelength image was normalized to a grayscale scale from 
0 to 255. A binary threshold was then applied: pixels with intensity 
values below a set threshold (e.g., 43 for transmittance mode) were 
assigned a value of 0 (black), while those above were set to 255 (white), 
resulting in a binary mask isolating the ROI. To further refine segmen-
tation, morphological operations with circular shapes were used to close 
small gaps in the ROI and eliminate stray background pixels. Following 
this, an erosion operation was applied to remove remaining edge pixels, 
particularly to eliminate the border of the Petri dish. Erosion is a stan-
dard morphological technique, readily available in libraries such as 
OpenCV, and is computationally efficient for this type of binary image 
processing. This method was first applied to one 2D image and then 
extended to all 300 2D images. Thanks to its simplicity and low 
computational cost, the method is suitable for automated processing, 
provided the images are acquired under consistent and controlled con-
ditions (e.g., stable illumination, absence of shadows). If acquisition 
conditions change significantly, adjustments to the selected wavelength 
or threshold values may be necessary.

When thresholding method was not able to recognize the region of 
interest, Circular Hough Transform was used (Su et al., 2012). The 
process involved three steps: first, applying a Gaussian blur to smooth 
the image, then using the Canny edge detection algorithm to identify 
edges, and finally applying the Hough Circles transform to detect circles 
based on adjustable parameters. An iterative process refined these pa-
rameters until six circles were detected. Although the detected radius 
was not always exact, a fixed smaller radius was used to capture the 
relevant region.

2.3.1.2. Cropping. Following segmentation, the background pixel 
values were set to zero. A fixed square of 754 x 754 pixels is defined, 
sufficient to enclose the entire region of interest, while reducing the 
overall image size, thereby reducing computational demands.

2.3.1.3. Mean pixel intensity. After cropping, a reduced version of the 
hyperspectral image was obtained. The mean pixel intensity for all non- 
zero pixels was calculated for each 2D image and the spectral data was 
obtained. From each hyperspectral image the spectra consist on the 
mean pixel intensity of each of the 300 wavelengths. The resulting data 
was referred to as RAW data.

2.3.1.4. Standard Normal Variate. Standard Normal Variate (SNV), 
spectral pre-processing method, was applied to mitigate the effects of 
illumination variability (Barnes et al., 1989; Shahrimie et al., 2016). 
Standard Normal Variate (SNV) method because it effectively corrects 

for multiplicative scattering effects and offset variations in spectral data, 
which are common issues in hyperspectral imaging of biological sam-
ples. SNV was chosen for its simplicity, wide use in the literature, and 
suitability for datasets where light scattering and baseline shifts are 
present but chemical features are subtle. The resulting spectra after this 
correction are referred to as SNV-preprocessed data.

2.3.1.5. Data normalization. Data were normalized to ensure that 
values were in a certain range in order to later accelerate machine 
learning algorithms convergence (Cabello-Solorzano et al., 2023). Dur-
ing most part of the study, all the data comprising spectra (300 wave-
lengths), pH, temperature and biomass, was normalized using a 
standard scaler, which removes the mean and divides by the standard 
deviation. All data were normalized to have zero mean and a standard 
deviation of one. Since the normalization technique could affect the 
model training (Huang et al., 2023), the min–max scaler was applied 
during the model refinement to check if the results could be improved. 
The min–max scaler scales the values between zero and one, by sub-
tracting the minimum and dividing by the difference between the 
maximum and the minimum.

2.3.1.6. Correlation analysis. To assess the relationship between spec-
tral data and biomass measured with VSS, Pearson’s correlation analysis 
was applied.

2.4. Machine learning models

Three different Machine Learning models (Support Vector Regres-
sion (SVR), Fully Connected Network (FCN) and Convolutional Neural 
Network (CNN)) were employed to estimate biomass from hyperspectral 
images. These models differ both in the algorithm used and the type of 
input data. Specifically, the SVR and FCN models utilized spectral in-
formation, while the CNN model processed multispectral images.

The selection of these models was based on the dataset characteris-
tics and the objective of evaluating different approaches for biomass 
estimation. The SVR method was selected for its ability to deliver ac-
curate predictions with a relatively small datasets, typically consisting of 
hundreds of samples (Rivas-Perea et al., 2012). Given the increasing 
success of deep learning models for complex, high-dimensional data, a 
Fully Connected Network (FCN) was also tested using spectral infor-
mation to evaluate its potential for improved feature extraction, despite 
the limited dataset size (Alzubaidi et al., 2021). Additionally, an image- 
based CNN model was developed to explore whether spatial information 
from hyperspectral images could provide added predictive value beyond 
the averaged spectral features.

Both the FCN and SVR models were trained using two types of input 
data: the full hyperspectral information (300 wavelengths) and a 
reduced multispectral version, where the spectral data was condensed to 
only 3 selected wavelengths of interest (439, 620 and 650 nm) (Lorenzo 
et al., 2022) (see supplementary materials).

For the CNN algorithm the hyperspectral images were reduced to a 
multispectral version focused on the 3 wavelengths of interest (439, 620 
and 650 nm) to reduce the training computational cost. In this case the 
images were cropped to a dimension of 58x58 (Lorenzo et al., 2022). 
Table S1 shows the values of parameters used for the SVR model and the 
values of the layers and output shapes for the FCN and CNN models.

Regarding the data splitting strategy, the dataset was divided by 
entire experiments rather than by randomly selecting individual data 
points. Each experiment represented a distinct growth batch, with data 
collected over a 1–2 year period. This splitting strategy was chosen to 
mimic real-world application scenarios, where predictive models must 
generalize to new, unseen growth batches. While splitting by experi-
ments could introduce bias if the training set lacks variability, this 
approach also reveals such biases, as poor generalization becomes 
evident in the test performance. To mitigate this risk, multiple 
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experiments were included in the training set, ensuring diversity and 
robustness.

For each round of model development, the data allocated for training 
was further divided into training and internal validation subsets (80 %– 
20 %) to monitor model performance and prevent overfitting. The final 
evaluation was performed on separate experiments that were not used 
during training, serving as an independent test set.

The metrics used as model performance indicators were the Mean 
Absolute Error (MAE) and the Mean Squared Error (MSE), R2 and per-
centage of prediction error.

Although the dataset includes 205 biomass-labeled samples and 450 
hypercubes, it spans a range of environmental conditions and micro-
biome types, enhancing its representativeness. While datasets with 
fewer than 1,000 samples are generally considered limited for ML 
training (Li et al., 2022), the structured design of this dataset and the use 
of model evaluation strategies such as independent test sets and stan-
dard error metrics (MAE, MSE) support a meaningful assessment of 
model performance and generalization capability.

2.5. Machine learning setup

The global dataset included 205 biomass measurements and 450 
hyperspectral images. The data was processed at three Learning Rounds 
during data acquisition (training & testing with ground truth). Learning 
Round 1 processed data from experiments 1 to 4. Learning Round 2 
processed data from experiments 1 to 4 and experiments 6 to 14. 
Learning Round 3 processed all the data. At each Learning Round all the 
models were replicated to compare their performance using RAW data 
and SNV data. The final biomass estimation model was derived from the 
3rd Learning Round moment. Table 2 provides detail on the data used 
for each machine learning moment (including both testing and training).

The models were developed through successive learning rounds of 
training, progressively incorporating additional data to improve pre-
diction accuracy (Table 2). At each learning round, model performance 
was monitored to assess improvements and identify tendencies in 
biomass estimation. This iterative approach was necessary, as the initial 
dataset was considered insufficient to develop a robust model.

Each round produced two biomass models: one based on RAW data 
and one SNV data. The final biomass estimation model was derived from 
the third round, with both RAW and SNV data used for model devel-
opment. Table 2 provides detail on the data used for each machine 
learning round (including both testing and training).

3. Results and discussion

3.1. Experimental data description

Three cyanobacteria-rich microbiomes from (Altamira-Algarra et al., 
2023) were subjected to different growth experiments in 3L PBRs. As 
detailed in Fig. 2a, all the three microbiomes were dominated by the 
cyanobacterium Synechocystis sp.

Dataset 1 (Fig. 2b, Table 1) consisted of 5 growth experiments of 
microbiome R3 starting from 100 mg/L of and reaching up to 
1000–1200 mg/L. Experiments 1–5 had a time span between 20- and 50- 
days. Additional details on microbiome R3 can be found in (Altamira- 
Algarra et al., 2024b). Dataset 2 (microbiome R1) and Dataset 3 
(microbiome CW2) each comprised 5 and 4 one-week growth experi-
ments, respectively. Dataset 2 reached biomass levels between 500 and 
1200 mg/L, while Dataset 3 reached up to 700 mg/L. Notably, Dataset 2 
exhibited greater variability in the different experiments.

A total of 205 biomass concentrations were obtained from the three 
datasets (Table 1). The distribution of biomass values across the three 
datasets is shown in Fig. 2c. The histogram shows that most biomass 
values fall within the lower range of 0 to 200 mg/L, with a more 
balanced distribution observed between 200 and 800 mg/L. Fewer 
samples are available for biomass values exceeding 800 mg/L, and very 
few samples (8) was recorded having values greater than 1000 mg/L. No 
data was available for biomass values above 1200 mg/L.

3.2. Spectral analysis and biomass correlation

A linear correlation analysis was performed to evaluate the rela-
tionship between the spectra obtained from hyperspectral images and 
the experimentally measured biomass values. For experiments 1–5 
(Dataset 1), spectra were generated using both transmittance and 
reflectance acquisition modes. Additionally, spectra were analyzed in 
both RAW and SNV (Standard Normal Variate) formats, so a total of 4 
spectra combinations were obtained per experiment. For illustrative 
purposes, Fig. 3a-d showcases the spectra alongside their corresponding 
Pearson correlation coefficients with the biomass measurements for 
Experiment 4 in Dataset 1. Data shows an inverse correlation in all cases 
between the biomass values and the spectral wavelengths below 700 
nm.

The spectral responses of the phycocyanin and chlorophyll-a pig-
ments are observed as valleys at 620 nm and 670 nm, respectively 
(Fig. 3a-d). In these plots, as the biomass concentration increases, the 
absorption of both phycocyanin at 620 nm and chlorophyll-a at 670 nm 
also increases.

By extracting direct reflectance values from the spectra at 620 nm, 
which corresponds to the absorption peak of phycocyanin, we can track 
variations in phycocyanin reflectance across consecutive days of growth. 
Fig. S1 (see supplementary materials) demonstrates a negative correla-
tion between biomass and reflectance at this wavelength. This rela-
tionship was initially identified in (Lorenzo et al., 2022), though the 
analysis was based on a limited dataset, which only provided pre-
liminary evidence of the potential negative correlation between biomass 
and spectral reflectance. Our data-set further supports a strong negative 
correlation between 620 nm and 670 nm peaks and biomass. On the 
other hand, a peak observed at 540–550 nm, characteristic of blue-green 
light, has been previously linked to the concentration of phycocyanin 
and can be used to monitor cyanobacterial growth (Lorenzo et al., 
2022). However, this peak does not exhibit a strong correlation across 
all spectra. Therefore, relying solely on this wavelength for monitoring 
cyanobacterial growth may not provide reliable results in all scenarios.

The selection between transmission and reflectance modes was 
based, firstly, on the more accurate segmentation of the images (higher 
contrast image and reflection effect removing in transmittance config-
uration), and secondly, on the fact that the SNV Reflectance data shows 
a decrease in correlation in wavelengths between 500–600 nm (Fig. 3d). 

Table 2 
Overview of data used in each machine learning round, including the number of 
images for training and testing.

Learning 
round

Training 
/Testing

Input data Number of 
images

1 Training Experiment 1, Experiment 2, 
Experiment 4

268

Testing Experiment 3 112
2 Training Training from Round 1 268

Testing Experiment 6, Experiment 7, 
Experiment 8, 
Experiment 9, Experiment 10, 
Experiment 11, Experiment 12, 
Experiment 13, Experiment 14

40

3 Training Experiment 1, Experiment 2, 
Experiment 3, Experiment 4, 
Experiment 6, Experiment 7, 
Experiment 8, Experiment 9, 
Experiment 10, Experiment 11, 
Experiment 12, Experiment 13, 
Experiment 14

420

Testing Experiment 5 30

J.M. Fernández Montenegro et al.                                                                                                                                                                                                           Bioresource Technology 435 (2025) 132943 

6 



Fig. 2. Experimental datasets. a) Microscopic images of microbiomes R3, R1 and CW. b) Growth curves of the different experiments. Dataset 1 comprises 5 different 
experiments (plots 1-5), dataset 2 and dataset 3 consists on the repetition of 4 growth -phases of 7 days (plots 6 and 7 respectively). c) Histogram showing the 
distribution of biomass values across the three datasets.
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For those reasons, all subsequent experiments were conducted in 
Transmittance mode.

Fig. 3e-f shows the spectra and correlations for dataset 2 and dataset 
3. The peak at 540–550 nm and absorption at 620 and 670 nm are also 
detected, although the correlation coefficients at these specific wave-
lengths are weaker than in dataset 1. The correlation data represent two 
distinct microbiome sets, R1 and CW2, which share similar microscopic 
microorganisms’ composition but differ in their origins (Altamira- 
Algarra et al., 2023).

Correlation analysis has been performed across all datasets (for both 
RAW and SNV spectral data) to corroborate the results from individual 
datasets. While strong correlations observed within individual datasets 
may be influenced by the limited sample sizes, the overall correlation 
across the entire dataset remains consistent. Fig. S1 (see supplementary 
materials) shows that both the raw and SNV-transformed spectral data 
maintain strong correlations with biomass, with most p-values below 
0.001. The only exceptions were observed in the SNV-transformed data 
at 690.82 nm and 692.97 nm, where the correlation coefficients were 
− 0.021 and 0.102, with p-values of 0.642 and 0.029, respectively. 
Despite these exceptions, the vast majority of wavelengths show statis-
tically significant correlations, supporting the relevance of the spectral 
data for biomass prediction.

3.3. Machine learning models

The first learning round was done with dataset 1, which included 
data from a single microbiome (R3) as both training and testing sets. 
Testing provide good estimation statistics, with errors below 0.3 (pre-
diction error (p.e.) below 10 %) in Transmittance mode. Then, the same 
model trained with dataset 1 was used in a second learning round, but in 
this case the testing was done with dataset 2 and 3, by consisting of 
microbiomes R1 and CW2 respectively. In this scenario estimation sta-
tistics performed poorly, with values of MAE above 0.3 (p.e. 10 %) (see 
supplementary materials), indicating the difficulties of the trained 
model to predict new data from a different microbiome with a slightly 
different microorganism composition. In response to these challenges, a 
3rd learning round was performed. In this iteration, the training phase 
incorporated experiments from all three datasets, and the testing was 
done on dataset 1 (experiment 5). To evaluate the impact of SNV, the 
models were trained and tested using raw (non-pre-processed) spectral 
data and compared to the models trained with SNV-pre-processed 
spectra. The performance metrics for both cases are presented in 
Table S2. In this learning round, from the two data types used for 
modelling, the SNV data performed better, indeed SNV metrics were 
below 0.2 (p.e. 7 %) (see supplementary materials), suggesting 
improved predictive capabilities compared to the initial attempt and 
demonstrating that SNV pre-processing provided a consistent improve-
ment in prediction accuracy.

The best model from the 3rd learning round underwent several re-
finements to improve prediction accuracy. The first refinement involved 
replacing data standardization with normalization, scaling the values 
between 0 and 1. Table S2 (see supplementary materials) compares the 
results from the 3rd learning round (using standardized data) with those 
from the first data refinement (using normalized data). For clarity, 
metrics are presented in biomass units (mg/L) to facilitate a more 
comprehensive understanding of the error predictions. For both models, 
with and without data normalisation, the MAE values indicate a 
consistent prediction error of 59 mg/L of biomass (p.e. below 5 %). 

Fig. 3a illustrates the real vs. predicted output values from this model.
The VSS technique for biomass analysis is subject to inherent errors 

and limitations, typically around 10 %, which can affect the accuracy of 
biomass estimations (APHA, 2005; Sagrado et al., 2005). Given the 59 
mg/L (p.e. below 5 %) prediction error, this represents only a small 
deviation from the real biomass concentration value, but it becomes a 
much larger discrepancy when applied to smaller biomass values. Note 
in Fig. 4a that for biomass values between 400 and 800 mg/L, the 
model’s predictions are highly accurate. However, for values outside 
this range, the model tends to deviate significantly, highlighting the 
challenges of accurately predicting lower or higher biomass values. 
Additionally, it is important to note that the dataset contains fewer 
samples with biomass values greater than 800 mg/L, which may 
contribute to the model’s decreased accuracy for these higher values.

A second model refinement was included by focusing on a multi-
spectral version of the model so to allow the use of a more cost-efficient 
image acquisition sensor system. This approach probed promising pre-
dictive accuracy, probing a hyperspectral system might not be neces-
sary. In this model refinement only wavelengths: 439, 620 and 650 nm 
were considered (Lorenzo et al., 2022), altogether with pH and tem-
perature data. Prediction indexes highlight that this refinement does not 
induce better predictions, in fact both indexes perform worst, with a 
prediction error around 250 mg/L (p.e. 20 %) for both types of data 
(standardized and normalized).

Learning rounds were also conducted using the FCN algorithm. 
However, the performance metrics for FCN were generally worse than 
those obtained with the SVR algorithm (see supplementary materials). 
Notably, the results from the 3rd learning round (see supplementary 
materials) highlight the poor performance of the FCN model. Since the 
3rd learning round results were better using the SVR algorithm, the 
normalization refinement was not tested on the FCN hyperspectral based 
model. Instead, the multispectral refinement was applied directly to 
both standardized and normalized SNV data (see supplementary mate-
rials). The multispectral refinement on normalized SNV data (Fig. 4b) 
emerged as the best data type, achieving a MAE of 37 mg/L (p.e. below 
4 %). Interestingly, no significant differences in prediction accuracy 
were observed between lower and higher biomass values, indicating that 
the model’s performance was consistent across the range of biomass 
concentrations.

Notably, the SVR model exhibited lower MAE and MSE when using 
hyperspectral data, but its performance deteriorated when the multi-
spectral refinement was applied. When the input data was treated as 
multispectral and limited to the three most relevant wavelengths, as 
identified in the literature, the model’s performance improved signifi-
cantly, achieving a prediction error of just 37 mg/L (p.e. 3.7 %). This 
suggests that for the FCN model, reducing the number of input variables 
can enhance model accuracy, indicating that including all spectral data 
might introduce unnecessary noise that hampers predictions. However, 
the opposite behaviour is depicted by the SVR model, the reduction of 
spectral data when using the multispectral processing led to a significant 
decline in prediction accuracy, with the error increasing from 59 mg/L 
(p.e. 5 %) to 253 mg/L (p.e. 20 %).

The CNN model directly uses the multispectral version of the 
hyperspectral images, since the use of the hyperspectral images require 
very high computational capabilities, thus selecting only 3 out of the 
total 300 wavelengths (Lorenzo et al., 2022). Additionally, this model 
processes only the RAW data, consisting of the pixel values from the 
images. The model was trained with the data as described in Table 2. In 

Fig. 3. Spectral analysis and biomass correlation. Left plots: a) RAW Transmittance, b) SNV Transmittance, c) RAW Reflectance and d) SNV Reflectance of dataset 1 
(experiment) 4. Note that each line is the result from an image taken at a certain moment in the growth curves. Right plots: corresponding Pearson correlation values 
between spectra and biomass measurements. e) Left plot: transmittance SNV data for dataset 2. Right plot: corresponding Pearson correlation values. f) Left plot: 
transmittance SNV data for dataset 3. Right plot: corresponding Pearson correlation values. Color key: dark green corresponding to biomass of less than 200 mg/L, 
while bright yellow corresponds to approximately 1000 mg/L of biomass. Blue vertical line at 439 nm. Orange vertical lines at 620 nm. Green vertical lines at 650 
nm. Selected wavelengths were extracted based on the relevant spectral ranges identified in Lorenzo et al. (2022).
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the 3rd learning round, the model’s performance was not highly accu-
rate (see supplementary materials), with errors slightly above a quarter 
of the range of possible values. However, the model was still able to 
differentiate between significant changes in biomass (see supplementary 
materials).

The image model has also been refined to work more efficiently with 
a cost-efficient sensory solution. The pre-processing of the solution was 
simplified. Instead of working with the whole image, the refined version 
works with a 58x58 pixels crop. The sensory solution will capture 58x58 
pixel areas of the sample; thus, no pre-processing will be required. This 
refinement led to improved performance, with slightly worse errors 
during training, but a notable improvement in testing errors, reducing 
the prediction error to 137 mg/L (p.e. below 12 %). Fig. 4c illustrates 
that, while the model performs better overall, predictions for biomass 
values greater than 800 mg/L remain less accurate.

The performance of the machine learning models was assessed across 
different dataset acquisition to evaluate whether the relationship be-
tween hyperspectral image features and biomass concentrations was 
maintained over time. Final models were trained using the complete 
dataset and their performances were compared to understand the effect 
of data characteristics and model architecture.

Among the models tested, Support Vector Regression (SVR) showed 
the best performance when trained on full hyperspectral data. However, 
to explore more practical and cost-effective alternatives, a reduced 
multispectral approach using only three wavelengths was also evalu-
ated. In this case, the FCN outperformed the SVR, whose performance 
dropped significantly, indicating that model architecture plays a critical 
role in adapting to limited input features. This highlights the potential of 
FCNs for deployment in resource-constrained monitoring systems using 
simplified spectral setups.

Fig. 4. Best Biomass prediction results for each ML algorithm a) SNV data type in learning 3, showing a prediction error of 59 mg/L). b) Multispectral normalised 
SNV data in round 3.2, with a prediction error of 37 mg/L). c) Refined multispectral model in round 3.2, with a prediction error of 137 mg/L.
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Across both spectral and image-based approaches, model perfor-
mance consistently decreased at biomass concentrations above 800 mg/ 
L. This limitation can be attributed to the lack of sufficient training data 
in that range, resulting in reduced model generalization. These findings 
indicate the need for further data acquisition focused on high biomass 
concentrations to develop models that are robust across the full opera-
tional range.

Image-based models, specifically Convolutional Neural Networks 
(CNNs), performed worse overall in this study. While these models serve 
as a promising proof of concept for leveraging spatial features in spectral 
data, they require further training on larger (ideally > 1,000 samples) 
(Li et al., 2022), more balanced datasets to achieve reliable biomass 
estimation. Their current performance emphasizes the importance of 
dataset size and structure in training high-capacity models such as 
CNNs.

Several factors contributed to prediction inaccuracies, including the 
limited sample size in certain biomass intervals and potential variability 
in image acquisition—such as changes in illumination, sensor noise, and 
slight inconsistencies in setup. Standardizing acquisition protocols and 
expanding the dataset would therefore be essential steps toward 
improving both model accuracy and robustness.

Interestingly, the multispectral models using just three selected 
wavelengths achieved accuracy levels that were comparable to those of 
models trained on the full hyperspectral dataset. This finding un-
derscores the feasibility of using simplified and more economical spec-
tral systems for biomass monitoring, especially in practical settings 
where full hyperspectral equipment may be impractical.

Lastly, prediction trends varied across training rounds. While the 
final models tended to slightly overestimate biomass, earlier rounds 
showed underestimation, revealing evolving model biases depending on 
dataset composition and training scope. These variations reinforce the 
importance of diverse and well-balanced datasets in building general-
izable predictive models.

4. Conclusions

To develop an accurate biomass estimator model, first there is the 
need to construct a large dataset connecting hyperspectral data with 
biomass concentrations. Three different models have been developed to 
establish this links: two that utilized spectral information from the 
hyperspectral images, plus info about the bioreactor pH and tempera-
ture; and one directly using the hyperspectral images. Standard Normal 
Variate (SNV) preprocessing was applied to correct data collection issues 
and improve the performance of the spectral model. Both spectral and 
image based approached found the models performance is worst for 
biomass values higher than 800 mg/L, indicating the need for additional 
data representing higher biomass concentrations.

Furthermore, a refined version of the models was also trained so the 
models could be used as part of a cost-effective sensory system. The 
comparison between the best refined performance spectral-based solu-
tion and the refined image-based solution showed that the spectral- 
based testing errors are smaller. The FCN model provided the best 
biomass prediction with a mean absolute error of 37.337 mg/L (p.e. 4 
%). Moreover, this low prediction error demonstrates the success of the 
dataset size and model training approach, validating the robustness of 
the developed biomass estimation model.
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Salmi, P., Calderini, M., Pääkkönen, S., Taipale, S., Pölönen, I., 2022. Assessment of 
microalgae species, biomass, and distribution from spectral images using a 
convolution neural network. J. Appl. Phycol. 34 (3), 1565–1575. https://doi.org/ 
10.1007/S10811-022-02735-W/TABLES/3.

Senatore, V., Rueda, E., Bellver, M., Díez-Montero, R., Ferrer, I., Zarra, T., Naddeo, V., 
García, J., 2023. Production of phycobiliproteins, bioplastics and lipids by the 
cyanobacteria Synechocystis sp. treating secondary effluent in a biorefinery 
approach. Sci. Total Environ. 857, 159343. https://doi.org/10.1016/J. 
SCITOTENV.2022.159343.

Shahrimie, M.A.M., Mishra, P., Mertens, S., Dhondt, S., Wuyts, N., Scheunders, P., 2016. 
Modeling effects of illumination and plant geometry on leaf reflectance spectra in 
close-range hyperspectral imaging. Workshop on Hyperspectral Image and Signal 
Processing, Evolution in Remote Sensing. https://doi.org/10.1109/ 
WHISPERS.2016.8071753.

Su, Y., Liu, Y., Huang, X., 2012. Circle Detection based on Voting for Maximum 
Compatibility. IEICE Trans. Inf. Syst. E95.D(6), 1636–1645. https://doi.org/ 
10.1587/TRANSINF.E95.D.1636.

Xu, Z., Jiang, Y., Ji, J., Forsberg, E., Li, Y., He, S., 2020. Classification, identification, and 
growth stage estimation of microalgae based on transmission hyperspectral 
microscopic imaging and machine learning. Opt. Express 28 (21), 30686. https:// 
doi.org/10.1364/oe.406036.

J.M. Fernández Montenegro et al.                                                                                                                                                                                                           Bioresource Technology 435 (2025) 132943 

12 

https://doi.org/10.1016/J.RSE.2015.01.025
https://doi.org/10.1016/J.RSE.2015.01.025
https://doi.org/10.2166/WST.2022.194
https://doi.org/10.2166/WST.2022.194
https://doi.org/10.1002/btpr.1843
https://doi.org/10.1007/s10811-024-03256-4
https://doi.org/10.1007/s10811-024-03256-4
https://doi.org/10.1016/J.JAG.2021.102393
https://doi.org/10.4236/IJIS.2013.31002
https://doi.org/10.1007/S10811-022-02735-W/TABLES/3
https://doi.org/10.1007/S10811-022-02735-W/TABLES/3
https://doi.org/10.1016/J.SCITOTENV.2022.159343
https://doi.org/10.1016/J.SCITOTENV.2022.159343
https://doi.org/10.1109/WHISPERS.2016.8071753
https://doi.org/10.1109/WHISPERS.2016.8071753
https://doi.org/10.1587/TRANSINF.E95.D.1636
https://doi.org/10.1587/TRANSINF.E95.D.1636
https://doi.org/10.1364/oe.406036
https://doi.org/10.1364/oe.406036

	Artificial intelligence based hyperspectral biomass estimator for cyanobacteria cultivation
	1 Introduction
	2 Materials and methods
	2.1 Experimental data
	2.2 Sample collection and analysis
	2.2.1 Biomass analysis, pH and temperature
	2.2.2 Hyperspectral image acquisition
	2.2.2.1 Hyperspectral technology
	2.2.2.2 Transmittance and reflectance acquisition modes
	2.2.2.3 Calibration and image parameter adjustment


	2.3 Data-sets preparation for ML models
	2.3.1 Hyperspectral image pre-processing
	2.3.1.1 Segmentation
	2.3.1.2 Cropping
	2.3.1.3 Mean pixel intensity
	2.3.1.4 Standard Normal Variate
	2.3.1.5 Data normalization
	2.3.1.6 Correlation analysis


	2.4 Machine learning models
	2.5 Machine learning setup

	3 Results and discussion
	3.1 Experimental data description
	3.2 Spectral analysis and biomass correlation
	3.3 Machine learning models

	4 Conclusions
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


