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 A B S T R A C T

The production of bioplastics, such as polyhydroxybutyrate (PHB), using cyanobacteria offers a sustainable 
alternative to conventional plastics. However, achieving economically viable production requires optimizing 
biomass growth. This study examined four growth models: Gompertz (empirical growth), Baranyi-Roberts (bi-
ologically dependent), Monod (nutrient dependent), and Aiba (irradiance dependent). The results indicate that 
a light-based model more accurately describes cyanobacterial growth and shows potential for optimizing light 
regimes. Additionally, an estimator was proposed to assess the potential PHB yield within the given biomass. 
Experiments were conducted to correlate photosynthetic efficiency with biomass production, providing deeper 
insights into the effects of light on growth. These findings support the development of optimized cultivation 
strategies, ultimately improving the economic viability of cyanobacteria-based bioplastics.
. Introduction

While large-scale plastic production has driven advancements across 
arious industries, it has also resulted in significant environmental 
osts [1]. Bioplastics, made from renewable resources, have emerged 
s a sustainable alternative that supports a circular economy, reduces 
arbon emissions, and lowers toxicity during production and degrada-
ion [2]. Polyhydroxy alkanoates (PHAs) have received much attention 
n the current scenario due to their potential to replace polypropylene 
PP) [3]. Cyanobacteria are promising candidates for producing poly-
ydroxy butyrate (PHB), a type of PHA, as they offer lower production 
osts, require less cultivation space, and grow faster than many plant 
rganisms [4]. PHB production in cyanobacteria involves inoculum 
reparation, a growth phase, and the regulation of environmental 
ariables to redirect metabolism to PHB synthesis [5]. Mathematical 
odels play a crucial role in optimizing these processes by estimating 
iomass growth rates under varying conditions. Through simulation, 
odels guide adjustments to cultivation parameters, offering insights 
nto growth dynamics and metabolic responses, thereby enabling the 
evelopment of optimized cultivation strategies.

∗ Corresponding author.
E-mail address: ines.perez@aimen.es (I.P. Couñago).

This study focuses on modeling the accumulation of cyanobac-
terial biomass and estimating PHB yield. We compared four well-
established models, each incorporating different variables, to assess the 
environment influences on these processes. Building on these models, 
a new model combining irradiance, temperature, and pH was devel-
oped, demonstrating the highest accuracy in reproducing laboratory 
observations and showing potential for providing insights to optimize 
light regimes. In parallel, experiments were conducted to examine the 
correlation between biomass and photosynthetic activity, to identify 
strategies to enhance biomass productivity.

Novelty of this research lies in its integration of model-based in-
sights with experimental data, comparing different models under the 
same experimental conditions, a comparison that has not been widely 
explored in the literature. Additionally, we explore the interplay be-
tween light, biomass, and photosynthetic activity using PAM-FIS tech-
niques, an area where limited information exists for cyanobacteria. 
By fine-tuning cultivation strategies and creating favorable conditions 
for metabolic efficiency, cyanobacterial cultures can be optimized for 
enhanced PHB production.
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Nomenclature

𝑎0 Growth retardation coefficient
𝑎 PHB accumulation rate [h−1]
𝑏 PHB degradation rate [gL−1h−1]
𝐾𝑆 Light saturation coefficient [μmolm−2s−1]
𝐾𝐼 Light inhibition coefficient [μmolm−2s−1]
𝐾𝑁 Nitrogen saturation coefficient [gL−1]
𝐼 Irradiance [μmolm−2s−1]
𝑙𝑎𝑔 Growth retardation coefficient for Gom-

pertz model
𝑀8 Microbiome primarily composed of Syne-

chocystis sp. and Synechococcus sp.
𝑀11 Microbiome primarily composed of Syne-

chococcus sp. and green algae
𝑁 Concentration of nitrogen [gL−1]
𝑃𝐵𝑅 Photobioreactor
𝑆𝑦 Synechocystis sp.
𝑇 Temperature [◦C]
𝑇 1 Temperature-Driven Model 1
𝑇 2 Temperature-Driven Model 2
𝑡 time [h]
𝜇(⋅) Specific growth rate [h−1]
𝜇 Maximum growth rate [h−1]
𝜇𝑑 Decay rate [gL−1h−1]
𝑋 Biomass concentration [gL−1]
𝑋0 Initial biomass concentration [gL−1]

2. Materials and methods

2.1. Experimental data

Cyanobacteria were cultured in a 3-liter photobioreactor using BG-
11 medium at ambient temperature. pH levels were maintained be-
tween 7 and 8 through controlled 𝐶𝑂2 injection. The lighting regimen 
consisted of 16 h of illumination under cool white fluorescent light at 
an intensity of 400 PPFD, followed by 8 h of darkness. To evaluate 
biomass content, a 10 mL sample was extracted from the photobiore-
actor, and fixed solids were separated by igniting the sample at 550 ◦C, 
following the Standard Methods for the Examination of Water and 
Wastewater [6], which allows for the quantification of volatile sus-
pended solids (VSS). Biomass quantification was conducted daily at 
8:00, 12:00, and 15:00, with no sampling on weekends, resulting in 
17-hour intervals on weekdays and a maximum interval of 65 h over 
the weekend. The experimental setup is illustrated in Fig.  1.

Experimental data, detailed in Table  1, was organized into three 
datasets to address strain differences and potential variations in lab-
oratory conditions:

• Dataset 1 (Synechocystis - AIMEN). Growth data from Synechocys-
tis sp. strain R2020, isolated from a wastewater treatment plant 
using microalgae [7], cultivated at the AIMEN laboratory.

• Dataset 2 (Microbiomes - AIMEN): Growth data for two micro-
biome types: (i) M11 (primarily composed of Synechococcus sp.
and green algae) and (ii) M8 (primarily composed of Synechocystis 
sp. and Synechococcus sp., described in [8]), cultivated at the 
AIMEN laboratory.

• Dataset 3 (Microbiomes - UPC). Growth data for microbiomes M8 
and M11, cultivated at the Universitat Politècnica de Catalunya 
(UPC) laboratory.
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PHB data, expressed as the amount of PHB accumulated within the 
biomass, were collected over a 126-day period from two photobiore-
actors (PBR-1 and PBR-2) at the UPC laboratory. The data collection 
process involved a series of growth and accumulation cycles. In the 
initial growth phases, cultures were supplied with optimal levels of 
essential nutrients, light, and carbon dioxide to promote robust cellular 
growth. Following this, cells entered a dark period combined with 
nutrient deprivation, which triggered PHB accumulation as an energy 
reserve in response to stress. Once the production of PHB began to 
stabilize, nutrient replenishment was introduced under illuminated 
conditions to promote further growth. More details on the strategies 
employed to stimulate PHB accumulation can be found in [5].

PHB analysis was adapted from the methodology described in [9]. 
PHB was extracted from the biomass by a digestion procedure prior to 
gas chromatography (GC) analysis. Briefly, 50 mL of mixed liquor was 
collected and centrifuged at 4200 rpm for 7.5 min. The samples were 
then frozen at −80 ◦C overnight in an ultra-freezer (Arctiko, Denmark) 
and subsequently freeze-dried for 24 h in a freeze dryer at −110 ◦C and 
0.05 hPa (Scanvac, Denmark). Approximately 3–3.5 mg of freeze-dried 
biomass were mixed with 1 mL of CH3OH with H2SO4 (20% v/v) and 
1 mL of CHCl3 containing 0.05% w/w benzoic acid. The samples were 
heated for 5 h at 100 ◦C in a dry-heat thermo-block (Selecta, Spain). 
After the heating step, the samples were placed in a cold-water bath for 
30 min to cool. Subsequently, 1 mL of deionized water was added to 
the tubes, and they were vortexed for 1 min. The CHCl3 phase was then 
recovered using a glass pipette and transferred to a chromatography 
vial containing molecular sieves. Samples were analyzed by GC (7820A, 
Agilent Technologies, USA) using a DB-WAX 125–7062 column (Agilent 
Technologies, USA). Helium was used as the carrier gas at a flow rate of 
4.5 mL min−1. The injector had a split ratio of 5:1 and a temperature of 
230 ◦C. The FID was set to 300 ◦C. A standard curve of the co-polymer 
PHB-HV was used to quantify the PHB content.

2.2. Model development

2.2.1. Model selection
A review of the literature led to the selection of four growth models, 

each chosen for their different biological foundations. Although other 
models exist, those selected were chosen primarily for their acceptance 
in the literature and their computational tractability. Based on this 
review, the following models were considered the most appropriate for 
the objectives of the study, providing a framework for capturing key 
variables influencing cyanobacterial growth that aligns well with the 
dataset used in this study:

• Mathematical Response - Gompertz Model [10]. The Gompertz 
curve was adapted to ensure biological relevance, making it a 
foundational model for cyanobacterial growth.

• Biological Response - Baranyi-Roberts Model [11]. The growth is 
modeled based on the organism’s ability to adapt to the culture 
medium, focusing on the biological characteristics of cyanobacte-
ria.

• Environmental Response
– Nutrients - Monod Model [12]. Links growth rate to sub-
strate levels (e.g., nitrogen), addressing nutrient limitation.

– Light - Aiba Model [13]. Models growth in response to 
light intensity, incorporating photolimitation and photoin-
hibition effects.

– pH. Links growth rate to an optimal pH range, with a 
decline as pH deviates from this value [7]. This approach 
was chosen for its simplicity and effectiveness.

– Temperature: We modeled temperature effects on growth 
using both a pH-like approach [7] (T1 model) and the 
Arrhenius equation, which incorporates temperature-depen-
dent parameters [13] (T2 model).
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Fig. 1. AIMEN experimental setup for monitoring cyanobacterial growth.
Table 1
Summary of experimental growth data, including dataset ID, strain type, number of experiments (#Exp), and key culture 
conditions (pH, temperature, nitrogen concentration, and irradiance) for each laboratory.
 Lab Dataset Strains #Exp pH T [◦C] N [mg/L] I [PPFD] 
 AIMEN 1 Synechocystis sp. 2 6.80 20.6 25 400  
 1 Synechocystis sp. 1 6.98 22.0 25 400  
 2 M11 microbiome 1 7.05 24.0 2 400  
 2 M11 microbiome 1 6.62 24.0 2 400  
 2 M8 microbiome 1 7.65 19.8 2 400  
 UPC 3 M11 microbiome 28 – 35.0 25 400  
 3 M11 microbiome 2 – 35.0 50 400  
 3 M8 microbiome 10 – 35.0 25 400  
 3 M8 microbiome 1 – 35.0 50 400  
By decoupling these models (e.g., Aiba combined with Monod, pH, 
and temperature factors), we balance biological realism and computa-
tional manageability, allowing focused evaluation of variables impact-
ing cyanobacterial growth [12]. After establishing a biomass growth 
model, the PHB yield is analyzed by estimating the production rates 
and evaluating the impact of PHB consumption [14,15], providing a 
comprehensive view of bioplastic accumulation in response to environ-
mental conditions. The complete expressions for each model mentioned 
are provided in Table  2.

2.2.2. Parameter estimation
Parameter estimation involves assigning values to model parameters 

to optimize the alignment between model predictions and experimental 
growth. Two methods were applied: (i) the curve_fit function from the
SciPy library for nonlinear equations, and (ii) the Pyomo library, using 
a Concrete type model with 50 interior finite element discretization, 
the piopt solver, and mean squared error as the objective function for 
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dynamic systems. Estimated parameter values were cross-referenced 
with ranges reported in the literature to ensure that the estimations 
are consistent with biological behaviors, thereby improving the model’s 
reliability and interpretability.

2.2.3. Implementation
Each dataset was simulated separately using the models. Normalized 

Root Mean Square Error (NRMSE) was used to quantify the percentage 
error between simulated and experimental data [16]. NRMSE is cal-
culated as follows, where 𝑦𝑖 represents the experimentally measured 
biomass at time 𝑖, 𝜃𝑖 represents the biomass value predicted by the 
model at time 𝑖, 𝑁 is the total number of data points, and �̂� is the mean 
of the experimentally measured biomass values: 

𝑁𝑅𝑀𝑆𝐸 =

√

(
∑𝑛

𝑖=1(𝑦𝑖 − 𝜃𝑖)2∕𝑁)

�̂�
. (1)

Each model was evaluated in two ways across datasets:
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Table 2
Summary of growth models, including model name, mathematical expression, input variables, and estimated parameters.
 Model Expression Variables Parameters  
 Gompertz 𝑋(𝑡) = 𝑋0 ⋅ exp

(

−exp
(

𝜇 ⋅ 𝑒 ⋅ 𝑙𝑎𝑔−𝑡
𝑋0

+ 1
))

𝑋0 , 𝑡 𝜇, 𝑙𝑎𝑔  
 Baranyi-Roberts 𝜕𝑋

𝜕𝑡
= 𝜇 ⋅ 𝛼(𝑡) ⋅

(

1 − 𝑋
𝑋max

)

⋅𝑋 𝑋0 𝜇, 𝑋max  
 Monod 𝜕𝑋

𝜕𝑡
= 𝜇 ⋅ 𝛼(𝑡) ⋅ 𝑁

𝑁+𝐾𝑁
⋅𝑋 − 𝜇𝑑 ⋅𝑋2 𝑋0, 𝑁 𝜇, 𝜇𝑑 , 𝐾𝑁  

 Aiba 𝜕𝑋
𝜕𝑡

= 𝜇 ⋅ 𝛼(𝑡) ⋅ 𝐼
𝐼+𝐾𝑆+𝐼2∕𝐾𝐼

⋅𝑋 − 𝜇𝑑 ⋅𝑋2 𝑋0, 𝐼 𝜇, 𝜇𝑑 , 𝐾𝑆 , 𝐾𝐼  
 Lag phase 𝛼(𝑡) = 𝑎0

𝑎0+exp(−𝜇⋅𝑡)
𝑡 𝑎0  

 pH 𝜇(pH) = (pH−pH𝑀 )(pH−pH𝑚 )2

(pH𝑜−pH𝑚 )[(pH𝑜−pH𝑚 )(pH−pH𝑜 )−(pH𝑜−pH𝑀 )(pH𝑜+pH𝑚−2pH)]
pH pHopt, pHmin, pHMax 

 T1 𝜇(𝑇 ) = (𝑇−𝑇𝑀 )⋅(𝑇−𝑇𝑚 )2

(𝑇𝑜−𝑇𝑚 )⋅[(𝑇𝑜−𝑇𝑚 )⋅(𝑇−𝑇𝑜 )−(𝑇𝑜−𝑇𝑀 )⋅(𝑇𝑜+𝑇𝑚−2𝑇 )]
T 𝑇opt, 𝑇min, 𝑇Max  

 T2 (Arrhenius) 𝜇(𝑇 ) = exp
(

− 𝐸𝑎

𝑅⋅(𝑇+273)
+ 𝐸𝑎

𝑅⋅𝑇𝑎

)

T 𝜇, 𝜇𝑑 , 𝐸𝑎, 𝑇𝑎  
 PHB production 𝜇(PHB, 𝑡) = 𝑎 ⋅𝑋(𝑡) 𝑋, 𝑡 𝑎  
 PHB with degradation 𝜇(PHB, 𝑡) = 𝑎 ⋅𝑋(𝑡) − 𝑏 𝑋, 𝑡 𝑎, 𝑏  
Fig. 2. (A) Setup of the optical system used for fluorescence measurement. (B) Fluorescence signals (red points), with points within the circle representing cyanobacteria selected 
for measurement.
• Calibration. For each experiment, the parameters are calibrated 
and the NRMSE is computed. The overall model calibration er-
ror is represented by the average NRMSE obtained from the 
calibration of each experiment.

• Prediction. Model parameters are estimated using all but one 
experiment, which is reserved as the validation set. The average 
of the estimated parameters is then calculated. The model is run 
for the environmental conditions of the validation experiment 
using the averaged parameters, and NRMSE is computed to assess 
predictive accuracy on the unseen data. This process is repeated, 
rotating through each experiment as the validation set, ensuring 
the independence of the results. The overall predictive perfor-
mance of the model is quantified by the mean NRMSE across all 
experiments.

2.2.4. Sensitivy analysis
The effect of parameter fluctuations was studied by increasing and 

decreasing each parameter by a percentage of its original value while 
keeping all other parameters fixed at their optimized settings. We opted 
for a 1% variation in our study to focus on small fluctuations around the 
optimized parameter values [17]. The percentage change in the model 
output was then computed. This approach enables the identification 
of parameters that exert the most significant influence on the model’s 
behavior and provides insight into the robustness of the model.

2.3. Photosynthetic activity monitoring

The PAM-FIS technique was used to assess photosynthetic activ-
ity [18]. The FIS method analyzes the Fourier transform of an image 
to extract spatial frequency content, while the PAM technique mea-
sures chlorophyll fluorescence changes in response to light intensity 
variations. Combined, these techniques provide both spatial and spec-
tral photonic information, as well as photosynthetic activity at the 
76 
micrometer scale. Experiments were conducted at the Nanophotonics 
Department of the Iberian Nanotechnology Laboratory (INL). The ex-
perimental setup is illustrated in Fig.  2. Over one month, 20 mL aliquots 
were sampled weekly from Synechocystis sp. strain and M8 microbiome 
cultures to assess photosynthetic efficiency as biomass increased. The 
maximum quantum yield (MQY), a key indicator of photosynthetic 
activity, was obtained through a sequence of light pulses applied to 
the fluorescence signals of the cyanobacteria.

3. Results and discussion

3.1. Model definition

The Gompertz and Baranyi-Roberts models were ineffective in ac-
curately capturing cyanobacterial growth characteristics during both 
calibration and prediction in the three data sets. In contrast, models 
incorporating abiotic factors demonstrated superior performance. The 
Aiba model generally exhibited better predictive capabilities than the 
Monod model. Combining the Aiba model with temperature and pH 
resulted in a 65% reduction in NRMSE compared to the baseline Aiba 
model. Adding the Monod model in the combination ranked second 
in predictive accuracy, suggesting that future work should explore 
alternative nutrient-based models.

A significant reduction in fitting errors was observed as more cal-
ibration data became available, as demonstrated within Dataset 3 
(Microbiomes - UPC). Additionally, predictive errors were much larger 
when calibration experiments showed greater differences between ex-
perimental conditions, as seen in Dataset 1 (Synechocystis - AIMEN). 
Fig.  3 illustrates the NRMSE values for calibration and simulation. The 
overall NRMSE for the coupled Aiba model with temperature and pH 
is 9.09% for calibration and 37.75% for prediction. These results align 
with those reported in the literature [7,13].
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Fig. 3. NRMSE values for models in Table  2: (A) Calibration errors across the three datasets, (B) Simulation errors across the three datasets, and (C) Simulation errors for coupled 
Aiba model configurations on Dataset 2 (Microbiomes - AIMEN).
Fig. 4. Fitting of PHB models to experimental data: (A) PBR1, (B) PBR2, and (C) associated NRMSE values for the model fits.
Fig.  4 compares the effect of considering cellular PHB consumption 
in the estimation of PHB yield. Incorporating cyanobacterial degrada-
tion rates provides a more accurate reproduction of the percentage 
of PHB in the biomass achieved in each photobioreactor. However, 
the proposed model still exhibits a tendency to overestimate bioplastic 
production. This likely arises from the specific conditions required to 
trigger PHB accumulation, namely, a dark period and nutrient depri-
vation, while the biomass model used to estimate growth simulates 
standard growth conditions, lacking these stress factors. Furthermore, 
since PHB synthesis typically occurs once cell growth has deceler-
ated, future improvements to the model should integrate the nutrient 
availability dynamics.

Based on these results, the following model is proposed to estimate 
biomass and analyze the amount of PHB that could be achieved in the 
estimated biomass: 

𝜕𝑋
𝜕𝑡 = 𝜇 ⋅ 𝛼(𝑡) ⋅ 𝜇(𝑝𝐻) ⋅ 𝜇𝑇 1(𝑇 ) ⋅

𝐼
𝐼+𝐾𝑆+𝐼2∕𝐾𝐼

⋅𝑋 − 𝜇𝑑 ⋅𝑋2,

𝛼(𝑡) = 𝑎0
𝑎0+exp(−𝜇𝑡)

,

𝜇(𝑝𝐻) = (𝑝𝐻−𝑝𝐻𝑀 )(𝑝𝐻−𝑝𝐻𝑚)2

(𝑝𝐻𝑜−𝑝𝐻𝑚)[(𝑝𝐻𝑜−𝑝𝐻𝑚)(𝑝𝐻−𝑝𝐻𝑜)−(𝑝𝐻𝑜−𝑝𝐻𝑀 )(𝑝𝐻𝑜+𝑝𝐻𝑚−2𝑝𝐻)]

𝜇𝑇 1(𝑇 ) = (𝑇−𝑇𝑀 )⋅(𝑇−𝑇𝑚)2

(𝑇𝑜−𝑇𝑚)⋅[(𝑇𝑜−𝑇𝑚)⋅(𝑇−𝑇𝑜)−(𝑇𝑜−𝑇𝑀 )⋅(𝑇𝑜+𝑇𝑚−2𝑇 )]

𝑃𝐻𝐵(𝑡) = 𝑎 ⋅𝑋(𝑡) − 𝑏.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2)

3.1.1. Parameter estimation
The parameter estimation analysis was conducted to evaluate the 

consistency and robustness of the developed model. Parameters for 
77 
temperature and pH align with empirical findings from [7], specifically: 
𝑝𝐻𝑜𝑝𝑡 = 8.52, 𝑝𝐻𝑚𝑖𝑛 = 3.9, 𝑝𝐻𝑚𝑎𝑥 = 13.08, 𝑇𝑜𝑝𝑡 = 32 ◦C, 𝑇𝑚𝑖𝑛 = 15.57 ◦C, 
and 𝑇𝑚𝑎𝑥 = 32 ◦C. For the remaining seven parameters, estimated values 
across datasets and references can be found in Table  3.

Although some discrepancies arise between our estimates and those 
reported in the literature, they can be contextualized by the experimen-
tal framework used:

• Maximum Growth Rate (𝜇𝑚𝑎𝑥). Controls culture growth speed, 
with lower values indicating slower growth rates [22]. The esti-
mated values for our model are well-aligned with those reported 
in the literature.

• Lag Phase Constant (𝑎0). Although the relationship between 𝑎0
and adaptation duration is indirect, higher values suggest a more 
extensive adaptation requirement for the cells [23]. Estimations 
for 𝑎0 are consistent with values in the literature.

• Decay Rate (𝜇𝑑). Represents the cell death rate. Estimated values 
are notably smaller than those in the literature. This discrepancy 
is due to the calibration experiments not reaching the cell death 
stage, rendering 𝜇𝑑 relatively inconsequential in this context [24].

• Light Saturation (𝐾𝑆 ) and Inhibition Coefficients (𝐾𝐼 ). Define 
optimal and harmful light intensities, respectively. Although ref-
erences vary due to experimental conditions, our estimations for 
𝐾𝑆 and 𝐾𝐼  are consistent across datasets with similar lighting. No-
tably, the 𝐾𝐼  value of approximately 1300 𝜇𝑚𝑜𝑙𝑚−2𝑠−1 aligns with 
an irradiance level three times the applied intensity, consistent 
with ratios reported [13].

• PHB Accumulation Rate (𝑎). Represents the rate at which biomass 
is accumulated as PHB. Our findings indicate a production rate 
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Table 3
Parameter estimation results: parameter expressions, literature values, and average estimates from experiments for each dataset.
 Parameter References Dataset 1 Dataset 2 Dataset 3 
 𝜇[1∕h] 0.45 [12], 0.2 [7] 0.104 0.041 0.181  
 𝜇𝑑 [g∕Lh] 0.02 [12], 1e-5 [19] 1e−05 8e−06 9e−02  
 𝐾𝑆 [𝑃𝑃𝐹𝐷] 165 (I=92) [13], 300 (I=20) [7] 633.33 400 535.871  
 𝐾𝐼 [𝑃𝑃𝐹𝐷] 457 (I=92) [13], 726 (I=100) [20] 1166.66 1333.33 1239.84  
 𝑎0 0.51 [21] 0.33 0.377 0.511  
 

Fig. 5. Average sensitivities of model parameters to changes in input variables across 
all datasets.

of approximately 0.2, higher than the values typically reported 
in the literature [14]. This discrepancy likely arises from the 
overestimation of the model, previously discussed.

• PHB Degradation Rate (𝑏). Reflects PHB degradation by the cells. 
No specific reference values for 𝑏 were found in the literature for 
this parameter.

3.1.2. Sensitivity analysis
The impact of each parameter in the proposed model was evaluated 

through sensitivity analysis. The maximum growth rate, 𝜇, emerged as 
the most sensitive parameter. A 1% increase in 𝜇 results in a 2% change 
in the biomass estimated. In contrast, parameters associated with envi-
ronmental adaptation induce changes approximately five times smaller 
than those caused by variations in 𝜇, suggesting that the model is more 
stable concerning environmental adaptation factors. This underscores 
the importance of accurately estimating the maximum growth rate, as 
it has a greater impact on the predicted biomass than other parameters. 
The results of the sensitivity analysis are presented in Fig.  5.

3.2. Optimization

A significant disparity in growth dynamics was observed across 
the datasets, which is reflected in both experimental observations and 
model predictions. Fig.  6 presents three representative samples of the 
experimental and simulated growth data.

The variation in the onset of growth was observed across the 
datasets, with significant differences in how quickly growth was ini-
tiated:

• In Dataset 2 (Microbiomes - AIMEN), the M8 microbiome experi-
ment exhibited delayed growth initiation, captured by the model 
with a parameter 𝑎0 = 1, indicating a substantial delay in growth 
compared to the other datasets.
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Table 4
Comparison of experimental and model-optimized values: irradiance, achieved biomass, 
maximal PHB achievable.
 Irradiance [PPFD] Biomass [mg/L] PHB [mg/L]
 Exp Opt Exp Opt Exp Opt  
 M11 No 1 400 387 1204.49 1205.71 42.32 42.35 
 M11 No 2 400 387 1091.39 1093.16 39.61 39.65 
 M8 400 837 937.41 1367.76 34.42 40.82 

• In contrast, the M11 microbiome in Dataset 2 (Microbiomes - 
AIMEN) demonstrated a much faster growth initiation, with a 
significantly lower 𝑎0 value of 0.1.

• Dataset 3 (Microbiomes - UPC) showed a moderate delay in 
growth initiation, with an 𝑎0 value of 0.5, consistent with the 
observed experimental trends. Dataset 1 (Synechocystis - AIMEN) 
also exhibited a moderate growth initiation delay, with an 𝑎0
value of 0.3.

Differences in the overall growth rate across datasets were also 
noticed:

• Dataset 3 (Microbiomes - UPC) exhibited the fastest growth, 
reaching 1 gram of biomass in the shortest amount of time, with 
a predicted maximum growth rate (𝜇) of 0.181.

• Dataset 1 (Synechocystis - AIMEN) demonstrated a slower growth 
rate, with 𝜇 = 0.104.

• Dataset 2 (Microbiomes - AIMEN), particularly the M8 micro-
biome, demonstrated the slowest growth, with the lowest es-
timated 𝜇 = 0.041, indicating significant growth retardation 
compared to the other datasets.

Additionally, variations in biomass evolution under different light 
intensities were investigated, revealing notable differences for ex-
periments corresponding to Dataset 2 (Microbiomes - AIMEN) (see
Fig.  7).

Initially, biomass remains low across all irradiance values. As growth
advances, light intensity plays a more significant role in biomass 
production. M11 cultures achieve higher biomass levels between 200 
and 800 PPFD, with an optimal intensity at 387 PPFD, whereas M8 
cultures peak between 500 and 1000 PPFD, reaching their optimum at 
837 PPFD. Beyond optimal ranges, biomass declines, consistent with 
excessive light intensity causing cellular damage.

Comparisons between biomass and the amount of PHB that could 
be achieved in the estimated biomass, under optimal and experimental 
conditions, are summarized in Table  4. For M11 microbiomes, as the 
experimental conditions are already near optimal, further improve-
ments at the optimal intensity are minimal, supporting the model’s 
estimation of the optimal light conditions. In contrast, M8 microbiomes 
exhibit a significant increase in PHB content within the biomass, rising 
from 34.42 mg/L to 40.82 mg/L, representing a 18.59% increase when 
optimized. This suggests potential for further enhancement through 
light intensity adjustments. However, while the results indicate that 
light optimization can maximize biomass and PHB yield, the liter-
ature remains controversial [25], and further research is needed to 
substantiate this claim.
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Fig. 6. Growth data for (1) Dataset 1 (Synechocystis - AIMEN), (2) Dataset 2 (Microbiome - AIMEN), and (3) Dataset 3 (Microbiomes - UPC) samples. (A) Model calibration and 
(B) model predictions for a specific experiment. Dots represent experimental data, while lines indicate model simulations.
Fig. 7. Biomass distribution over time under varying irradiance for Dataset 2 (Microbiome - AIMEN): (A) Microbiome M11, Experiment 1, (B) Microbiome M11, Experiment 2, 
and (C) Microbiome M8.
3.3. Photosynthetic activity monitoring

Since photosynthesis drives light utilization, PAM-FIS measure-
ments were conducted to correlate cyanobacterial photosynthetic ac-
tivity with growth. For the Synechocystis sp. strain, three measurements 
were taken with dark adaptation (cyanobacteria kept in darkness for 
20 min before light pulses) and two without. For the microbiome, 
two measurements were taken under light conditions and two in 
darkness. High p-values (see Table  5) indicated no significant differ-
ence in photosynthetic activity between dark-adapted and non-adapted 
cyanobacteria, consistent with previous research [26], which suggests 
cyanobacteria respond differently to dark adaptation than plant cells. 
Fluorescence signals were examined under red, blue, and green light, 
with successful detection only under red light. This corresponds to the 
absorption spectra of photosynthetic pigments in Synechocystis sp. and
Synechococcus sp. (chlorophyll a, carotenoids, and phycobiliproteins), 
which predominantly absorb light in the 400–700 nm range [15]. 
While blue light is known to enhance phycocyanin production, red light 
appears more effective for overall photosynthetic activity.

MQY values ranged from 0.30 to 0.55 for pure cultures and mi-
crobiomes, aligning with literature values for healthy cells [27,28]. 
A negative Pearson’s correlation of −0.88 between biomass and pho-
tosynthetic activity was observed (Fig.  8). This may be due to the 
increased opacity of cyanobacteria as biomass grows, which leads to 
light competition and reduced photosynthetic efficiency. At the same 
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Table 5
P-values for comparing light adaptation (LA) and dark adap-
tation (DA) similarity between pure strain and microbiome 
samples.
 DA 1 DA 2 DA 3  
 Sy LA 1 10.3% 92.16% 14.05% 
 Sy LA 2 12.34% 2.03% 2.7%  
 M8 LA1 92.18% 5.2%  
 M8 LA 2 0.90% 1.1%  

time, early cultures require optimized light capture for survival due 
to limited nutrient reserves. Diluting cultures as they grow may be 
beneficial, as it ensures cyanobacteria receive optimal light exposure, 
preventing a slowdown in photosynthetic activity and maintaining 
biomass productivity.

4. Conclusions

This study compared four growth models—Gompertz, Baranyi-
Roberts, Monod, and Aiba—to evaluate the influence of various vari-
ables on growth dynamics. Empirical models failed to accurately cap-
ture cyanobacterial growth across the three datasets compiled in this 
study, emphasizing the need for abiotic models. Incorporating temper-
ature and pH in the Aiba model notably improved accuracy, reducing 
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Fig. 8. Biomass versus photosynthetic activity: the blue line shows the photosynthetic 
activity trend, the green line represents the growth trend, and the dots correspond to 
experimental data for both parameters.

the NRMSE by 65% compared to the baseline. While the Monod-
based variant also performed well, it was less accurate, suggesting 
further exploration of nutrient-based models. The parameter estimation 
analysis revealed the maximum growth rate as the most sensitive 
parameter, with a 1% increase resulting in a 2% change in biomass, 
while environmental adaptation parameters had a smaller effect.

An estimator for the achievable PHB yield within a given biomass 
was analyzed. Incorporating PHB degradation enhanced yield estima-
tion, although the model still overestimated PHB production. Future 
work should consider stress factors and the timing of PHB synthesis in 
relation to growth phases to improve the accuracy of the estimator.

The model developed with irradiance, temperature, and pH achieved
90% accuracy in calibration and 63% in growth prediction, alongside 
a method to estimate PHB yield. It effectively captured variations in 
growth initiation and rates, with higher 𝜇 values indicating faster 
growth and higher 𝑎0 values reflecting slower growth onset. Optimizing 
light intensity showed potential for increasing PHB content, especially 
for the M8 microbiome, with a predicted 18.59% increase, while 
confirming optimal conditions for the other experiments. These findings 
suggest that adjusting light intensity could enhance biomass and PHB 
production, though further research is needed due to inconsistencies in 
the literature. PAM-FIS experiments showed red light as more efficient 
for overall photosynthetic activity and revealed a negative correlation 
between growth and photosynthetic efficiency. This suggests that dilut-
ing the culture as it grows could optimize light exposure, maximizing 
biomass productivity. Using a red light filter may further enhance 
biomass growth efficiency.

In conclusion, this study offers a framework for estimating biomass 
accumulation in response to environmental variables, particularly fo-
cusing on light. The findings provide valuable insights for optimizing 
laboratory conditions and defining the ideal environmental factors at 
each growth stage to enhance biocompound production. Expanding 
calibration data is essential for improving the model’s accuracy, and 
incorporating more precise representations of nutrient consumption 
could further optimize it. By deepening our understanding of these 
factors, we can establish more effective guidelines for controlling PHB 
production, paving the way for sustainable bioplastic and bioproduct 
development.
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